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The important equation

Hom(A ® B,X) = Hom(B,Hom(A, X)) (1)

or, putting in all the subscripts,

Homg mod (rRAs ®s sBr, X) = Homg mod (sBr, Homg.mod (rAs; X)) (2)
We are considering the situation

ctsp S5 ¢
where the categories are module categories (e.g. C = gMod) and the functors
are representable (e.g. F(X) = Homg(A, X)).

Questions. When is the composition of representable functors representable?
When so, how do you determine the representing object? (Solve equation for
T: Hom(7,X) = Hom(B,Hom(A, X)).)
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represented by A = /A, then this functor can be lifted to an
algebra-valued functor Homy (A, X) : Y — V exactly when A has a
V-coalgebra structure, A = yyAy. (Thm 5 of notes.)

@ Freyd gives a presentation for A ® B in terms of the algebra structures on
A and B, and the coalgebra structure on A. (Thm 7 of notes.)
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Simplest example

Hom(A, X) : Set — Set : X — X = x|

Compose two such:

Hom(B, Hom(A, X)) : Set — Set : X +— X s (X*)B = x4*8

(X8 = XA%B . fisf: f(x,y) = (f(»))(x) is a bijection.)
So Hom(B, Hom(A, X)) = Hom(A x B, X).
Sowesay A ® B= A X Bin Set.
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Hom(A ® B, X) = Hom(B,Hom(A, X))

is “natural”, hence expresses that the functor A ® _ is the left adjoint of the
hom functor Hom(A, _). Since left adjoints are known to preserve colimits it
follows that Z — A ® Z will preserve colimits. In particular,
ARM®N)=(A®M)® (A® N) for modules.
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