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Spec(R)

We take the points of Spec(R) to be (or to be represented by) the prime ideals
of R.

We take the closed sets to be the “vanishing sets” of subsets of R:

ForSCR, V(S)={p|SCp} (Why “vanishing”?)

V(S) = V((S)) = V(r({(S))). A setis open if it is V(S)¢ for some S.
Q@ Spec(R) = V({0}).
@ 0 =Vv({1}).
0 NV(S) = V(US).
Q V(HUV(J) = V() =V({INnJ).
@ InZ, |J,V({2-3--px}) is not a vanishing set.
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Q@ Spec(Z).

@ Spec(k[x]), k a field.

@ Spec(Zg|x]).

© (Boolean ring, B < (F,)") Spec(B) = Stone space of B.

© (Nagata idealization, R @& M) Spec(R & M) = Spec(R).
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Spectral spaces: Definition & Theorem

Definition. A topological space is spectral if it is homeomorphic to Spec(R)
for some commutative ring R. (Don’t look at Wikipedia!)

Hochster’s Characterization of Spectral Spaces.
A space is spectral iff

@ it is sober,

@ it is compact,

© it has a basis of compact open sets, and

Q the intersection of two compact open sets is compact open.
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Definition. A topological space is sober if each closed irreducible subset has
a unique generic point.

More primitive concepts:

Q A rtopological space is . ...

Q A closed set is irreducible if it is (a) not empty and (b) not expressible as
the union of two proper closed subsets. That is, C is irreducible as a
closed set iff it is a (proper) meet-irreducible in the lattice of closed sets
ordered by reverse inclusion. (If not irreducible, then reducible.)

@ A point p is a generic point of a closed set C if {p} = C.

Facts/examples/nonexamples.
@ In any topological space, the closure of a point is irreducible. In a sober
space, a closed subset is irreducible iff it is the closure of a unique point.
@ Hausdorff spaces are sober. In such spaces, the closed irreducible sets
are the singletons.
© MaxSpec(R) need not be sober. (Max(R), AM; m-Spec(R), Mat.)
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Compact open <+ V(ry, ..., 1) <> g, distinguished

Let’s discuss:
Compact subsets of a space.
Compact elements of a lattice.

Compact elements of the lattice of closed sets of an algebraic closure
operator.

Compact elements of Id1(R); of the associated frame.

00 0060

Thm. An element is compact in the lattice of radical ideals iff it is the
radical of a finitely generated ideal r({f1,...,fi)).

@ A compact open subset of Spec(R) is a finite union of “distinguished”
(or “principal”) open sets:

D(f):=V({ ) ={p|f¢p} (Think: D(f) = support of f.)

equivalently it has the form V(fi, ..., f;), k finite.
@ Spec(R) = V(1) so the whole space is “distinguished”. It follows that
Spec(R) is compact.
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Easy direction of Hochster’s Theorem

Spec(R)
@ is sober, because
closed irreducible = V(I), I a N-irred. radical ideal = V(p)
@ is compact, because
Spec(R) = D(1) = V(1)©
© has a basis of compact open sets, because
open = V(I)*

compact open = V({fi, ... ,fi))*
Every I is a join of {fi,...,fi)’s (in fact, of (f)’s)

@ has the property that the intersection of two compact open sets is
compact, because

V(IS A VI)E = (VD) U V) = VN = V(L)
(i1, -y i) (1s - - Je) = ({ins})
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