
Primary Decomposition: Lasker-Noether Theorem

Primary Decomposition: Lasker-Noether Theorem 1 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm.

(General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic)

If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.

Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.

If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal.

m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m.

Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M.

Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.

2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Meet-irreducible ideals

I is meet-irreducible if I = J ∩ K implies I = J or I = K.

The meet-irreducible ideals of Z are those of the form (q) where q = pk is a
prime power.

Thm. (General version of Fund. Thm. Arithmetic) If L is a lattice with ACC,
then every element is a finite meet of meet-irreducible elements.

(ACC for a lattice is equivalent to: every nonempty subposet satisfies the
hypotheses of Zorn’s Lemma, hence has a maximal element.)

Proof.
Let M ⊆ L be the set of elements that are not finite meets of meet irreducibles.
If M 6= ∅, then ∃m ∈ M, maximal. m cannot be meet-irreducible, so m = j ∩ k
for some j, k > m. Necessarily j, k ∈ M. Hence m = j ∩ k ∈ M, contradiction.
2

Primary Decomposition: Lasker-Noether Theorem 2 / 20



Primary decomposition

Call an ideal Q � A primary if xy ∈ Q implies x ∈ Q or yn ∈ Q for some n.
(Equivalently, xy ∈ Q implies x ∈ Q or y ∈

√
Q.) (Equivalently, zero divisors

in A/Q are nilpotent.)

Lm. A meet-irreducible ideal of a Noetherian ring is primary.

Proof. (Contradiction)
Assume that xy ∈ Q, x /∈ Q, y /∈

√
Q. Let n be the terminating index of

(Q : y) ≤ (Q : y2) ≤ (Q : y3) ≤ · · · ≤ (Q : yn) = (Q : yn+1) = · · · .

Let’s check that Q = (Q + (x)) ∩ (Q + (yn)) is a meet-representation of Q.

Choose z = q1 + ax = q2 + byn. We have ax− byn = q2 − q1 ∈ Q. Hence
(ax− byn)y ∈ Q, so byn+1 ∈ Q, so b ∈ (Q : yn+1), so byn ∈ Q, so
z = q1 + byn ∈ Q. 2
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√
Q. Let n be the terminating index of

(Q : y) ≤ (Q : y2) ≤ (Q : y3) ≤ · · · ≤ (Q : yn) = (Q : yn+1) = · · · .

Let’s check that Q = (Q + (x)) ∩ (Q + (yn)) is a meet-representation of Q.

Choose z = q1 + ax = q2 + byn. We have ax− byn = q2 − q1 ∈ Q. Hence
(ax− byn)y ∈ Q, so byn+1 ∈ Q, so b ∈ (Q : yn+1),

so byn ∈ Q, so
z = q1 + byn ∈ Q. 2
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Lasker-Noether Theorem

Thm. Any ideal in a Noetherian ring is a finite meet of primary ideals.
(I.e., every ideal has a primary decomposition.)

Questions.

1 How close is “primary” to “prime power”?
2 How unique are the primary factors in a decomposition?
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A bad example

Example. If A is a local ring of Krull dimension 0, then every ideal of A is primary.

A

0

m = N

A

m

units

nilpotent elements

x /∈ Q, y /∈
√

Q = m =⇒ xy /∈ Q.

If dimk(V) > 1, then the Nagata idealization k ⊕ V has many different
irredundant primary decompositions of (0). The primary factors are not
uniquely determined. Even the number of factors is not uniquely determined.
The indices of the ideals is not uniquely determined, etc.
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Primary ideals

Thm.

1 If Q is primary, then p :=
√

Q is prime. (Q is called p-primary.)
2 (Weak converse) If

√
Q is maximal, then Q is primary. (Hence if

mk ⊆ Q, for some maximal m, then Q is primary.)
3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2
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Proof.
(1) xy ∈

√
Q

implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies
x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q)

implies xn ∈ Q or (yn)m ∈ Q implies
x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q

implies
x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0,

so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal.

If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51.

2

Primary Decomposition: Lasker-Noether Theorem 6 / 20



Primary ideals

Thm.
1 If Q is primary, then p :=

√
Q is prime. (Q is called p-primary.)

2 (Weak converse) If
√

Q is maximal, then Q is primary. (Hence if
mk ⊆ Q, for some maximal m, then Q is primary.)

3 Example of a primary ideal that is not a prime power: (x, y2)� k[x, y].
4 Example of a prime power that is not primary: A = k[x, y, z]/(xy− z2),

p = (x, z). Ideal p is prime, but p2 is not primary.

Proof.
(1) xy ∈

√
Q implies (∃n)((xy)n ∈ Q) implies xn ∈ Q or (yn)m ∈ Q implies

x ∈
√

Q or y ∈
√

Q.

(2) If
√

Q is maximal in A/Q is local of Krull dimension 0, so Q is primary.

(3) m = (x, y)� k[x, y] is maximal. If Q = (x, y2), then m2 ( Q ( m, so Q is
primary, but not a power of a maximal ideal.

(4) See AM, Example 3, page 51. 2
Primary Decomposition: Lasker-Noether Theorem 6 / 20



Uniqueness

First Uniqueness Thm. Let I =
⋂n

i=1 Qi be an irredundant primary
decomposition of I. The prime ideals pi =

√
Qi are exactly the prime ideals of

A of the form
√
(I : x), hence are independent of the decomposition.

(Second Uniqueness Theorem: AM, Theorem 4.10)
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The Krull Intersection Theorem

Krull Intersection Thm. If A is Noetherian, I � A and K =
⋂

n<ω In, then
there exists i ∈ I such that (1− i)K = 0. Hence if I is a proper ideal, then⋂

n<ω In = (0) in the following cases:

(a) I ⊆ J(A). (Mention Jacobson’s Conjecture!)

(b) A is a local ring.

(c) A is an integral domain.

Idea of proof.
IK and K have equal primary decompositions. So IK = K. Use NAK.

Write IK = Q1 ∩ · · · ∩ Qr ∩ Qr+1 ∩ · · · ∩ Qk, where Qi is pi-primary, pi ⊇ I
for 1 ≤ i ≤ r and pj 6⊇ I for r < j ≤ k. If yj ∈ I \ pj for r < j ≤ k, then x ∈ K
implies xyj ∈ IK ⊆ Qj implies x ∈ Qj. Thus K ⊆ Qr+1 ∩ · · · ∩Qk. Also, since
I ⊆ pi for 1 ≤ i ≤ r, we have Im ⊆ Q1 ∩ · · · ∩ Qr. Since K ⊆ Im we have
K ⊆ Q1 ∩ · · · ∩ Qk = IK, hence IK = K. 2
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Associated primes

Defn. An associated prime of a module M 6= (0) is a prime annihilator,
p = (0 : m). Ass(M) is the set of them.

• p ∈ Ass(M) iff ∃m(p = (0 : m)) iff A/p ∼= 〈m〉 ≤ M.

• All nonzero cyclic submodules of A/p are isomorphic, since all nonzero
elements have annihilator equal to p. Hence Ass(A/p) = {p}.

• Cyclic modules of the form A/p behave like the more specialized modules
S = A/m (m maximal), which are typical simple modules. It is not
unreasonable to think of associated primes as specifying a kind of torsion in
M: p ∈ Ass(M) iff p = (0 : m) for some m ∈ M, so m is an “exact p-torsion”
element.
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Existence of Associated Primes

Thm. Let M 6= (0) be an A-module.

(1) Every maximal element of S = {(0 : m) | m ∈ M \ {0}} is in Ass(M).
(2) If A is Noetherian, then

(a) Ass(M) 6= ∅, and
(b) the set of zero divisors on M is

⋃
Ass(M).

Proof. (1) Assume that (0 : m) is maximal in S, rs ∈ (0 : m), but s /∈ (0 : m).
Then rs ∈ (0 : m) iff rsm = 0 iff (0 : sm) ⊇ {r} ∪ (0 : m). Since sm 6= 0, the
maximality of (0 : m) in S implies that {r} ∪ (0 : m) = (0 : m), or
r ∈ (0 : m).

(2a) S is nonempty since M \ {0} is nonempty. Hence if A is Noetherian,
every ideal in S is contained in an ideal that is maximal in S.

(2b) The set of zero divisors on M is
⋃

m∈M\{0}(0 : m), which by (2a) is the
union

⋃
Ass(M) of the maximal ideals in S. 2
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⋃
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union

⋃
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Exact Sequences

Thm. If 0→ L α→ M
β→ N → 0 is exact, then

Ass(L) ⊆ Ass(M) ⊆ Ass(L) ∪ Ass(N).

Proof. If A/p ↪→ L and L ↪→ M, then A/p ↪→ M. Hence Ass(L) ⊆ Ass(M).

If A/p ∼= 〈m〉 ≤ M, then either there is a nonzero n in α(L) ∩ 〈m〉 (in which
case A/p ∼= α−1(〈n〉) ≤ L) or else there is no such n (in which case
A/p ∼= β(〈m〉) ≤ N). Hence Ass(M) ⊆ Ass(L) ∪ Ass(N). 2

Example. If 0→ Z α→ Z2 × Z
β→ Z2 × Z3 → 0 is exact, where

α(m) = (0, 3m), then Ass(L) = {(0)}, Ass(M) = {(0), (2)}, and
Ass(N) = {(2), (3)}. Thus none of the inclusions need be equality.
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Ass(M) is a Finite Set

Thm. If M is a nonzero f.g. module over a Noetherian ring A, then M has a
finite filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

such that Mi+1/Mi ∼= A/pi+1, pi+1 prime, for each i.

Proof. Ass(M) 6= ∅, so ∃M1 ≤ M such that M1 ∼= A/p1. Repeat with M/M1
to obtain a filtration 0 = M0 ⊆ M1 ⊆ · · · of the desired type, which must be
finite since M is Noetherian. 2

Cor. If M is a finitely generated module over a Noetherian ring A, then
Ass(M) is a finite set.

Sketch of proof. The theorem on exact sequences implies that every associated
prime of M must arise as a factor in any filtration of M with factors of the
form A/p. Now apply the above theorem. 2
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Associated Primes Under Localization, I

Here we consider the effect on associated primes of restriction of scalars
along A→ S−1A. (A→ S−1A induces a continuous injection
Spec(S−1A)→ Spec(A), which we treat as inclusion.)

Thm. If M is an S−1A-module, then AssA(M) = AssS−1A(M).

Proof. If m ∈ M, then (0 : m)A = ((0 : m)S−1A)|A. Hence if p ∈ AssS−1A(M)
we have p|A ∈ Ass(M).

Conversely if m ∈ M \ {0} and p = (0 : m)A ∈ AssA(M), then p∩ S = ∅ (else
m = 0), so p(S−1A) is prime. We claim that p(S−1A) = (0 : m)S−1A, so that
p(S−1A) ∈ AssS−1A(M). To see this, note that r/s ∈ (0 : m)S−1A iff
∃t ∈ S(trm = 0) iff ∃t ∈ S(tr ∈ (0 : m)A = p) iff r ∈ p. 2
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Associated Primes Under Localization, II

Now we consider extension of scalars along A→ S−1A.

Thm. If A is Noetherian and M is an A-module, then AssS−1A(S
−1M) =

AssA(M) ∩ Spec(S−1A).

Proof. If p ∈ AssA(M) ∩ Spec(S−1A), then p = (0 : m)A for some
m ∈ M \ {0} and p is disjoint from S. Now (r/s)m = 0 iff ∃t ∈ S(trm = 0).
Since tr ∈ p and t /∈ p, must have (r/s) ∈ p(S−1A), so p(S−1A) = (0 : m)S−1A
implying that p(S−1A) ∈ AssS−1A(S

−1M).

Conversely, if P ∈ AssS−1A(S
−1M), then P = (0 : m)S−1A for some

m ∈ M \ {0}. If p = P ∩ A, then P = pA. If p = (a1, . . . , an), then the fact
that aim = 0 in MS means ∃ti ∈ S such that tiaim = 0 in M. For t = t1t2 · · · tn
we have p = (0 : tm)A, so p ∈ AssA(M). 2
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m ∈ M \ {0} and p is disjoint from S. Now (r/s)m = 0 iff ∃t ∈ S(trm = 0).
Since tr ∈ p and t /∈ p, must have (r/s) ∈ p(S−1A), so p(S−1A) = (0 : m)S−1A
implying that p(S−1A) ∈ AssS−1A(S

−1M).

Conversely, if P ∈ AssS−1A(S
−1M), then P = (0 : m)S−1A for some

m ∈ M \ {0}. If p = P ∩ A, then P = pA. If p = (a1, . . . , an), then the fact
that aim = 0 in MS means ∃ti ∈ S such that tiaim = 0 in M. For t = t1t2 · · · tn
we have p = (0 : tm)A, so p ∈ AssA(M).
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Supp(M)

Df. Supp(M) = {p | Mp 6= 0}.

Lm. (If N ≤ M are A-modules, then “m ∈ N” is a local property)
The set of primes p where m/1 ∈ Np is an open subset of Spec(A), and that it
is all of Spec(A) iff m ∈ N.

Proof.
m/1 = n/s ∈ Np iff (∃u /∈ p)(u(sm− n) = 0) iff (N : m) 6⊆ p. Hence the
closed set V((N : m)) is the set of primes for which m/1 /∈ Np.
Now suppose that V((N : m)) is empty. Then (N : m) = A, so m ∈ N. 2
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Relationship Between Ass(M) and Supp(M)

Thm. If M is a finitely generated module over a Noetherian ring A, then
Supp(M) is the order filter in 〈Spec(A);⊆〉 generated by Ass(M).

Proof.

• Ass(M) ⊆ Supp(M): If p ∈ Ass(M), then 0→ A/p ↪→ M is exact, hence
0→ Ap/pAp ↪→ Mp is exact, hence Mp 6= 0 (since Ap/pAp = κ(p) 6= 0).

• Any p ∈ Supp(M) can be shrunk to a minimal p′ ∈ Supp(M): By the
preceding lemma with N = (0), the set Supp(m) (= primes where m 6= 0) is
closed. If M is generated by m1, . . . ,mk, then Supp(M) =

⋃k
i=1 Supp(mi) is

closed, hence Supp(M) = V(I) for some ideal I. But any prime p ⊇ I
contains a minimal prime p ⊇ p′ ⊇ I by calg1p7.

• Any minimal p ∈ Supp(M) is in Ass(M): p ∈ Supp(M), so Mp 6= (0), so
∅ 6= AssAp(Mp) = AssA(M) ∩ Spec(Ap) ⊆ Supp(M) ∩ Spec(Ap) = {p}.

• Supp(M) is closed upward: m/1 6= 0/s in Mp iff (0 : m) ⊆ p, which implies
m/1 6= 0/t in Mq whenever p ⊆ q. 2
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0→ Ap/pAp ↪→ Mp is exact, hence Mp 6= 0 (since Ap/pAp = κ(p) 6= 0).

• Any p ∈ Supp(M) can be shrunk to a minimal p′ ∈ Supp(M): By the
preceding lemma with N = (0), the set Supp(m) (= primes where m 6= 0) is
closed. If M is generated by m1, . . . ,mk, then Supp(M) =

⋃k
i=1 Supp(mi) is

closed, hence Supp(M) = V(I) for some ideal I. But any prime p ⊇ I
contains a minimal prime p ⊇ p′ ⊇ I by calg1p7.

• Any minimal p ∈ Supp(M) is in Ass(M): p ∈ Supp(M), so Mp 6= (0), so
∅ 6= AssAp(Mp) = AssA(M) ∩ Spec(Ap) ⊆ Supp(M) ∩ Spec(Ap) = {p}.

• Supp(M) is closed upward: m/1 6= 0/s in Mp iff (0 : m) ⊆ p, which implies
m/1 6= 0/t in Mq whenever p ⊆ q. 2
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Primary Submodules

Defn. A submodule N � M is primary if for all a ∈ A the map
λa : M/N → M/N : m→ am is injective or nilpotent.

As in the case of ideals, when N � M is primary:

• the set p of a ∈ A where λa is not injective is a prime ideal. (N is p-primary.)

• A finite intersection of p-primary submodules is p-primary.

• If N � M is p-primary and m ∈ M \ N, then (N : m) is a p-primary ideal.
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Connection Between Associated Primes and Primary
Submodules, I

Assume that A is Noetherian and M is a f.g. A-module.

Thm. If N � M is p-primary, then Ass(M/N) = {p}.

Proof. There is some q ∈ Ass(M/N) because A is Noetherian. Every a ∈ q is
a zero divisor on M/N, so λa is nilpotent, so a ∈

√
(N : M). Hence

q ⊆
√
(N : M). On the other hand, q = (N : m) ⊇ (N : M) for some

m ∈ M \ N, so q =
√
(N : M). Since q is describable in terms of M and N,

Ass(M/N) = {q}. Now a ∈ p iff λa is noninjective on M/N iff
a ∈

√
(N : M) = q, so p = q. 2
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Connection Between Associated Primes and Primary
Submodules, II

Assume that A is Noetherian and M is a f.g. A-module.

Thm. If Ass(M/N) = {p}, then N is p-primary.

Proof. If Ass(M/N) = {p}, then
⋂

Supp(M/N) = p. But Supp(M/N)
consists of the primes containing (N : M) when M is f.g., so p =

√
(N : M).

Now if a is a zero divisor on M/N, then a ∈
⋃

Ass(M/N) = p, so
p =

√
(N : M) forces λa to be nilpotent. This proves that N is (p-)primary. 2
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Primary Decomposition For Modules

Thm. If Q � M is a meet-irreducible A-submodule, then Ass(M/Q) has at
most one element. If also A is Noetherian and M is f.g., then Ass(M/Q) has
exactly one element, and Q is primary.

Proof. If Ass(M/Q) = {p, q, . . .} has more than one element, then M/Q has
nonisomorphic submodules N1 ∼= A/p and N2 ∼= A/q. These would have to be
disjoint, contradiction. The second statement follows from the first and the
previous theorem. 2

Thm. If N = Q1 ∩ · · · ∩ Qk then Ass(M/N) ⊆
⋃

Ass(M/Qi). When A is
Noetherian, equality holds provided N = Q1 ∩ · · · ∩ Qk is an irredundant
representation and each Qi is primary. If N = Q1 ∩ · · · ∩ Qk is a minimal
representation, then the associated primes of the factors are uniquely
determined.
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