
Tensor Product – presentations

Tensor Product – presentations 1 / 20

Presentations

Examples.

1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn

= 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉

(〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property.

(Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem)

There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations

Examples.
1 The dihedral group is often defined by a presentation:

Dn = 〈r, f | rn = 1, f 2 = 1, frf = r−1〉 (〈r, f | rn, f 2, (rf)2〉).

2 A free object over X has presentation 〈X | ∅〉.

Df. A presentation, relative to variety V , is a pair 〈G | R〉 which represents the
algebra P = FV(G)/Θ(R).

Universal Property. (Derived from the universal property of free objects
using the First Isomorphism Theorem) There is a set morphism ι : G→ P
such that, for every set morphism g : G→ A into a V-object A where g(G)
satisfies the relations in R, there is a unique extension of g to an algebra
morphism ĝ : P→ A.

Tensor Product – presentations 2 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.

Then
〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y).

(And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉

∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are convenient

Suppose that 〈G1 | R1〉 and 〈G2 | R2〉 are disjoint presentations of V-objects.
Then

〈G1 | R1〉 t 〈G2 | R2〉 ∼= 〈G1 ∪ G2 | R1 ∪ R2〉

(Check)

In particular, FV(X) t FV(Y) ∼= FV(X t Y). (And tκFV(1) ∼= FV(κ).)

Exercise. Show that Z2 t Z2 = 〈a, b | a2 = 1 = b2〉 ∼= Dω.

Tensor Product – presentations 3 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups.

Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+

(a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P).

Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group

(a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”).

It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial,

finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite,

or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative.

Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal:

α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Presentations are inconvenient

Thm. (Adian-Rabin) Let P be a property of groups. Assume that there exists
a P-group G+ (a “positive witness” to P). Assume that there exists a finitely
presented group G− not embeddable in any P-group (a “strong negative
witness”). It is algorithmically undecidable whether a finitely presented group
has P .

For example, we cannot tell from a finite presentation of a group whether the
group it describes is trivial, finite, or commutative. Here you can replace the
commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with 〈G | R〉 is deciding if two elements
α, β are equal: α = w1(G)/Θ(R) = w2(G)/Θ(R) = β will hold iff the
equality w1(G) = w2(G) is provable from the set of relations R.

Tensor Product – presentations 4 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations

1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations

1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations

1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations

1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations

1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations

1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n

2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n

2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an),

a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an),

a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words,

M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors,

subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:

1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:
1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and

2 Any bilinear g : M × N → L extends uniquely to an A-linear
ĝ : M ⊗ N → L.

Tensor Product – presentations 5 / 20

Tensor products of A-modules, A commutative

M ⊗A N = 〈M × N | R〉 where

1 Generators (m, n) ∈ M × N are typically written m⊗ n, and called
“simple tensors”.

2 R consists of the following relations
1 (m + m′)⊗ n = m⊗ n + m′ ⊗ n
2 m⊗ (n + n′) = m⊗ n + m⊗ n′

3 a(m⊗ n) = (am)⊗ n = m⊗ (an), a ∈ A

In words, M ⊗A N is the A-module generated by the set
M × N = {m⊗ n | m ∈ M, n ∈ N} of simple tensors, subject to the weakest
set of relations needed to make ⊗ an A-bilinear operation.

The universal property can be re-expressed as:
1 There is a bilinear map ⊗ : M × N → M ⊗ N : (m, n) 7→ m⊗ n, and
2 Any bilinear g : M × N → L extends uniquely to an A-linear

ĝ : M ⊗ N → L.
Tensor Product – presentations 5 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:

1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′))

= h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and

2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′))

= h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and

2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′))

= h((m, n)) + h((m′, n′)), and

2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)),

and

2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and

2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n))

= ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n))

= ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N.

A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.

1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear

2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear

2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear

3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear

3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear

4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear

4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Linear versus bilinear

A map h : M × N → T is linear if it is an A-module homomorphism:
1 h((m + m′, n + n′)) = h((m, n) + (m′, n′)) = h((m, n)) + h((m′, n′)), and
2 h(a(m, n)) = ah((m, n)).

A map h : M × N → T is linear in its first variable if h(x, n) : M → T is linear
for any n ∈ N. A map h : M × N → T is bilinear it is linear in each variable
separately.

Notes.
1 linear 6= bilinear
2 linear ◦ bilinear = bilinear
3 bilinear (linear,linear) = bilinear
4 multiplication · : A× A→ A is bilinear

Tensor Product – presentations 6 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)

s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) s

sT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h

linear RBi(M × N, h)
= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear

RBi(M × N, h)
= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Universal arrow for ⊗

A-Mod

Set

j

Bi(M × N,X)
s{∗}

?

f

Bi(M × N,T) ssT

s

A
A
A
A
A
AU

g

s
Bi(M × N,Q)Q

R∃!h
linear RBi(M × N, h)

= h ◦

Tensor Product – presentations 7 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,

0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n

= (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n

= (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides.

2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b

= a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b

= 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b)

= 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b

= 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b

= 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0.

2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”.

We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant.

Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1.

2.

Tensor Product – presentations 8 / 20

Examples

Claim. In M ⊗A N,
0⊗ n = 0 for any n.

Proof.

0⊗ n = (0 + 0)⊗ n = (0⊗ n) + (0⊗ n)

Cancel 0⊗ n from both sides. 2

Claim. Z2 ⊗Z Z3 = 0.

“Proof 1”.

a⊗ b = a⊗ 4b = 4(a⊗ b) = 4a⊗ b = 0⊗ b = 0. 2

“Proof 2”. We need to argue that any bilinear map b : Z2 ×Z Z3 → A into a
Z-module is constant. Copy the idea of Proof 1. 2.

Tensor Product – presentations 8 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R

and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.

b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([
a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:

([
a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
,

a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.

So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2))

= M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).

There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism.

A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Not every element of M ⊗A N is a simple tensor

Let A = R and let M = N = R2.
b : R2 × R2 → M2(R) : (u, v) 7→ uvt is bilinear:([

a
b

]
,

[
c
d

])
7→
[

ac ad
bc bd

]
, a matrix of rank ≤ 1.

b(R2,R2) consists of precisely those matrices in M2(R) of rank ≤ 1.
So, span(b(R2,R2)) = M2(R).
There must be a factorization

b : R2 × R2 bilinear−→ R2 ⊗R R2 linear−→ M2(R)

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix
will be expressible as a sum of 2 simple tensors, but will not be a simple
tensor itself.

Tensor Product – presentations 9 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A. (Use mult. to get a map→ and freeness of A to get←.)
2 M ⊗A (

⊕
Ni) ∼=

⊕
(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A. (Use mult. to get a map→ and freeness of A to get←.)
2 M ⊗A (

⊕
Ni) ∼=

⊕
(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A. (Use mult. to get a map→ and freeness of A to get←.)
2 M ⊗A (

⊕
Ni) ∼=

⊕
(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A. (Use mult. to get a map→ and freeness of A to get←.)
2 M ⊗A (

⊕
Ni) ∼=

⊕
(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A.

(Use mult. to get a map→ and freeness of A to get←.)

2 M ⊗A (
⊕

Ni) ∼=
⊕

(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A.

(Use mult. to get a map→ and freeness of A to get←.)

2 M ⊗A (
⊕

Ni) ∼=
⊕

(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A. (Use mult. to get a map→ and freeness of A to get←.)

2 M ⊗A (
⊕

Ni) ∼=
⊕

(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Tensor product of vector spaces

The previous example can be modified to show that, if F is a field, then
Fm ⊗F Fn ∼= Mm×n(F).

In particular, dimF(Fm ⊗F Fn) = mn.

In fact, one can prove that the tensor product of free A-modules of ranks m
and n is free of rank mn using the isomorphisms

1 A⊗A A ∼= A. (Use mult. to get a map→ and freeness of A to get←.)
2 M ⊗A (

⊕
Ni) ∼=

⊕
(M ⊗A Ni).

Tensor Product – presentations 10 / 20

Deciding if two elements of M ⊗A N are equal

∑k
i=1 mi ⊗ ni =

∑`
j=1 pj ⊗ qj iff (

∑k
i=1 mi ⊗ ni)− (

∑`
j=1 pj ⊗ qj) = 0, so we

only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0,

so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N

iff it is zero in some
M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0

where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N,

both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,

and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length.

2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.

1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1
2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q,

but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1
2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z.

(Can shrink N = Q to N0 = 1
2Z.)

Tensor Product – presentations 11 / 20

Deciding if two elements of M ⊗A N are equal
∑k

i=1 mi ⊗ ni =
∑`

j=1 pj ⊗ qj iff (
∑k

i=1 mi ⊗ ni)− (
∑`

j=1 pj ⊗ qj) = 0, so we
only need to decide when an element equals zero.

Fact 1. (May assume M,N f.g.)
The element α =

∑k
i=1 mi ⊗ ni is zero in M ⊗A N iff it is zero in some

M0 ⊗A N0 where M0 ≤ M, N0 ≤ N, both M0 and N0 are finitely generated,
and ∀i(mi ∈ M0), ∀i(ni ∈ N0).

Why?

Because a proof of α = 0 has finite length. 2

Related example.
1⊗ 1 = 0 in Z2 ⊗Z Q, but not in Z2 ⊗Z Z. (Can shrink N = Q to N0 = 1

2Z.)

Tensor Product – presentations 11 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)

Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉.

An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iff

a11 · · · a1n
...

...
am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

=

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where
∑

i `ijei = 0 for all j and
∑

j rijfj = 0 for all i.
That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

(Pierre) Mazet’s Theorem

Caracterisation des epimorphismes par relations et generateurs
Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1–8

Thm. (Reformulated)
Assume that M = 〈e1, . . . , em〉 and N = 〈f1, . . . , fn〉. An element
α =

∑
ij aij(ei ⊗ fj) ∈ M ⊗A N equals zero iffa11 · · · a1n

...
...

am1 · · · amn

 =

`11 · · · `1n
...

...
`m1 · · · `mn

+

r11 · · · r1n
...

...
rm1 · · · rmn

where

∑
i `ijei = 0 for all j and

∑
j rijfj = 0 for all i.

That is, if α can be written as a sum of an element whose left-collected form
is trivial and an element whose right-collected form is trivial.

Tensor Product – presentations 12 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1

∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉,

Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉.

Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1].

But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3]

and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.

Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) =

10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to

LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,

2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Examples

Example 1.
α = 1⊗ 1 ∈ Z2 ⊗Z Z3 is zero.

Z2 = 〈e | 2e = 0〉, Z3 = 〈f | 3f = 0〉. Matrix for α = e⊗ f is [1]. But
[1] = [−2] + [3] and −2e⊗ f = 0⊗ f = 0 and e⊗ 3f = e⊗ 0 = 0.

Example 2. Let M = N = 〈x, y, z | 2x + 3y− 5z = 0〉.
Show that, in M ⊗Z N,

2(x⊗x)+4(x⊗y)+7(y⊗x)+12(y⊗y)+(z⊗x) = 10(y⊗z)+(z⊗y)+15(z⊗z).

Consider α ∈ M ⊗Z N equal to LHS-RHS,2 4 0
7 12 −10
1 −1 −15

 =

 2 4 0
3 6 0
−5 −10 0

+

0 0 0
4 6 −10
6 9 −15

Tensor Product – presentations 13 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm.

If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.

[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]

Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s,

rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0},

sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}.

If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n

= (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n)

= r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n)

= rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn

= 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]

If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.

M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.

M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0,

so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.

But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space.

So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Simple criterion for M ⊗A N = 0

Thm. If M and N are f.g., then M ⊗A N = 0 iff Ann(M) + Ann(N) = A.

For example, Z2 ⊗Z Z3 = 0!

Proof.
[⇐ does not require f.g.]
Assume that 1 = r + s, rM = {0}, sN = {0}. If m⊗ n ∈ M ⊗A N,

m⊗ n = (r + s)(m⊗ n) = r(m⊗ n) + s(m⊗ n) = rm⊗ n + m⊗ sn = 0.

[⇒]
If Ann(M) + Ann(N) 6= A, there exists I ≺ A containing the sum.
M 6= IM by Nakayama.
M/IM, N/IN are vec. spaces over field A/I, quotients 6= 0, so
M/IM ⊗A N/IN 6= 0.
But the image of M × N → (M/IM)× (N/IN)→ (M/IM)⊗A (N/IN)
generates this space. So M ⊗A N has a nontrivial quotient. 2

Tensor Product – presentations 14 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.

1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.

2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be
generated by the simple tensors from M0 × N0.

3 Relations that hold among elements of M ⊗A N depend essentially on
M,N, and A.

1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.

2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be
generated by the simple tensors from M0 × N0.

3 Relations that hold among elements of M ⊗A N depend essentially on
M,N, and A.

1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.

3 Relations that hold among elements of M ⊗A N depend essentially on
M,N, and A.

1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.

3 Relations that hold among elements of M ⊗A N depend essentially on
M,N, and A.

1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.

1 Z2 ⊗Z Z ∼= Z2,

yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2,

yet Z2 ⊗Z Q ∼= 0.

2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.
4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2,

yet Z2 ⊗Z Q ∼= 0.

2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.
4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.

2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.
4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C,

yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C,

yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.

1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.

2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.

3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.

4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.

5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Some properties

1 Every element of M ⊗A N is a sum of simple tensors.
2 If M is generated by M0 and N is generated by N0, then M ⊗R N will be

generated by the simple tensors from M0 × N0.
3 Relations that hold among elements of M ⊗A N depend essentially on

M,N, and A.
1 Z2 ⊗Z Z ∼= Z2, yet Z2 ⊗Z Q ∼= 0.
2 C⊗R C ∼= C⊕ C, yet C⊗C C ∼= C.

4 〈A-Mod;⊗A,⊕,A, 0〉/ ∼= is a class-size “commutative semiring”.
1 A⊗A M ∼= M: a⊗ m 7→ am.
2 M ⊗A N ∼= N ⊗A M: m⊗ n 7→ n⊗ m.
3 M ⊗A (N ⊗A P) ∼= (M ⊗A N)⊗ P.
4 ⊕ is also commutative and associative and has unit 0.
5 M ⊗A (N ⊕ P) ∼= (M ⊗A N)⊕ (M ⊗A P).

(Idea for (2): Argue that M × N → N ⊗A M : m⊗ n 7→ n⊗ m is bilinear, and
maps onto a generating set.)

Tensor Product – presentations 15 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q,

there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n).

Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation.

The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).

Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms,

and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges.

Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties.

We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property:

If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉,

B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then

A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Tensor products of rings

Given linear maps f : M → P, g : N → Q, there is an induced linear map,
written f ⊗ g, from M ⊗A N to P⊗A Q, which satisfies
(f ⊗ g)(m⊗ n) = f (m)⊗ g(n). Existence follows from the bilinearity of the

composite

M × N → P× Q→ P⊗A Q : (m, n) 7→ (f (m), g(n)) 7→ f (m)⊗ g(n).

Note: f ⊗ g is only a notation. The notation does not include an assertion that
f ⊗ g is a simple tensor in some structure.

(f , g) 7→ f ⊗ g yields a function ⊗ : EndA(M)× EndA(N)→ EndA(M ⊗A N).
Both ⊗1 : EndA(M)→ EndA(M ⊗A N), 1⊗ : EndA(N)→ EndA(M ⊗A N) are ring
homomorphisms, and they have commuting ranges. Morover, ⊗ is universal
for these properties. We use the notation A⊗ B to refer to object with this
universal property: If A = 〈G1 | R1〉, B = 〈G2 | R2〉, then
A⊗ B = 〈G1 ∪ G2 | R1 ∪ R2 ∪ C〉.

Tensor Product – presentations 16 / 20

Construction of A⊗k B

If A and B are k-algebras,

k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B.

(Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B,

unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1,

multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd,

and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example.

As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example.

Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).

More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).

More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example.

k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y]

∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y].

(Check!)

Tensor Product – presentations 17 / 20

Construction of A⊗k B

If A and B are k-algebras, k a field or Z, then

A⊗k B = (A t B)/(relations saying images commute)

When working entirely in a category of commutative kalgebras,
A⊗k B ∼= A t B. (Coprojections are a 7→ a⊗ 1 and b 7→ 1⊗ b.)

More concretely, A t B can be taken to have underlying k-module equal to
A⊗k B, unit element 1⊗ 1, multiplication of simple tensors defined by
(a⊗ b)(c⊗ d) = ac⊗ bd, and full multiplication defined to be the unique
bilinear extension of the definition for simple tensors.

Example. As rings, Z2 ⊗ Z3 = 0.
More interesting example. Mm(k)⊗k Mn(k) ∼= Mmn(k).
More generally, Mm(A)⊗k Mn(B) ∼= Mmn(A⊗k B).
More interesting commutative example. k[x]⊗k k[y] ∼= k[x, y]. (Check!)

Tensor Product – presentations 17 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B,

and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM,

we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B.

That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,

which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example.

An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source.

Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ ().

(F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Restriction and extension of scalars

Given a ring homomorphism ϕ : A→ B, and a B-module BM, we can define
an A-module AM by “restricting” the scalar action from B to the subset
ϕ(A) ⊆ B. That is, define a · m := ϕ(a) · m.

In fact, this construction defines a “forgetful” functor ϕ∗ : B-Mod→ A-Mod,
which is called “restriction of scalars” (from B to A).

Example. An complex vector space may be viewed as a real vector space by
restriction of scalars.

Any forgetful functor between equationally definable categories of algebras
has a left adjoint, which takes an object from the target to its “freest”
extension in the source. Here it is called “extension of scalars”.

HomB-Mod(F(M),N) ∼= HomA-Mod(M, ϕ∗(N))

F() = B⊗ (). (F(M) = B⊗A M, F(f) = idB ⊗ f .)

Tensor Product – presentations 18 / 20

Examples

1.

Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q,

so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules.

Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2.

Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map.

Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . .

M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M

(∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.

To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.

b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM :

(a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am

is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined,

bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.

Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.

Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM,

(im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0),

so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.

Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.

(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M,

so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.)

2

Tensor Product – presentations 19 / 20

Examples

1. Z ⊆ Q, so can restrict Q-spaces to Z-modules. Objects in the image of
functor have the form

⊕
κQ.

Extending scalars will take f.g. module Zd1 ⊕ · · ·Zdk ⊕
⊕

r Z to
⊕

r Q.

2. Let ν : A→ A/I be the natural map. Restriction of scalars is
Extension is . . . M 7→ A/I ⊗A M (∼= M/IM).

Proof of ∼=.
To show: A/I ⊗A M ∼= M/IM.
b : (A/I)×M → M/IM : (a,m) 7→ am is well-defined, bilinear.

Induces (A/I)⊗A M !→ M/IM : a⊗ m 7→ am.
Conversely M ∼= A⊗A M ν⊗1−→ A/I ⊗A M : m 7→ 1⊗ m 7→ 1⊗ m is A-linear.
Kernel contains IM, (im 7→ 1⊗A im = i⊗ m = 0⊗ m = 0), so
M/IM → (A/I)⊗A M : m 7→ 1⊗ m is A-linear.
Maps are inverse on generators.
(Use the fact that a⊗ m = 1⊗ am in A⊗A M, so a⊗ m = 1⊗ am in
(A/I)⊗A M.) 2

Tensor Product – presentations 19 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,).

(So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,).

(So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”.

(Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”.

(Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.)

I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).

(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).

(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

Summarizing comments

1 In general, the tensor product of objects M and N represents the
composite functor Hom(N,Hom(M,)).

2 M ⊗ is left adjoint to Hom(M,). (So ⊗ commutes with colimits.)

3 Universal property is “left universal”. (Guaranteed maps “go out”.) I.e.,
universal arrow goes from an object to a functor, rather than from a
functor to an object.

4 Working with tensor products ultimately reduces to working with
presented objects.

5 Tensor product of modules is used to convert multilinear algebra to linear
algebra.

6 Tensor product is used for extension of scalars (change of base ring).
(Adjoint to scalar restriction.)

Tensor Product – presentations 20 / 20

