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A Galois connection

Let k be a field, and consider the relation R ⊆ k[x1, . . . , xn]× kn defined by

(f (x), a) ∈ R ⇐⇒ f (a) = 0.

What are the closed sets of the corresponding Galois connection?

For A ⊆ kn, write I(A) for A⊥ = {f ∈ k[x] | (∀a ∈ A)(f (a) = 0)} (= the ideal of
polynomials that vanish on A), and for F ⊆ k[x] write V(F) for
F⊥ = {a ∈ kn | (∀f ∈ F)(f (a) = 0)} (= the vanishing set of F = the set of common
zeros of F).

Hence the Galois closure of A is A⊥⊥ = V(I(A)), while the Galois closure of F is
F⊥⊥ = I(V(F)).

By the general theory of Galois connections, there is an order-reversing bijection
between the Galois-closed subsets of kn and Galois-closed subsets of k[x]. Also, by
the theory, a subset A ⊆ kn is Galois-closed iff A = F⊥ = V(F) for some F ⊆ k[x],
and a subset F ⊆ k[x] is Galois-closed iff F = A⊥ = I(A) for some A ⊆ kn.

An informal way to say this: A ⊆ kn is Galois-closed iff it is definable by
polynomials, and F ⊆ k[x] is Galois-closed iff it is definable by points.
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Zariski topology, coordinate ring

Dfs.

1 A subset A ⊆ kn is an algebraic set if it is “definable by polynomials”, i.e. if
A = V(F) for some F ⊆ k[x].

2 The Zariski topology on kn is the topology whose closed sets are the algebraic
sets.

So we have defined C ⊆ kn to be Zariski-closed if C = V(F) = F⊥ for some
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The Galois connection

Thm. Assume that k is algebraically closed.

1 The Galois-closed subsets of kn are exactly the Zariski-closed sets.
2 The Galois-closed subsets of k[x] are exactly the radical ideals. (I =

√
I)

The nonobvious claim of this theorem is that every radical ideal is
Galois-closed.

Strong Nullstellensatz. Assume that k is algebraically closed. If
f ∈ I(V(f1, . . . , fm)), then f ∈

√
〈f1, . . . , fm〉.

A corollary is

Weak Nullstellensatz. Assume that k is algebraically closed. If
V(f1, . . . , fm) = ∅, then 〈f1, . . . , fm〉 = k[x].

A corollary of the corollary is

Fundamental Theorem of Algebra. Assume that k = C. If f (x) ∈ k[x] and
V(f [x]) = ∅, then 〈f (x)〉 = C[x], i.e. f (x) is a unit in C[x].
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The Rabinowitsch Trick

It is easy to see that the Weak Nullstellensatz follows from the Strong Nullstellensatz,
but the Rabinowitsch Trick shows that the strong follows from the weak.

To show: If f ∈ I(V(f1, . . . , fm)), then f ∈
√
〈f1, . . . , fm〉.

May assume at the outset that f is not the zero polynomial.
If
∧

(fi(a) = 0)⇒ f (a) = 0, then V(f1(x), . . . , fm(x), 1− yf (x)) = ∅.
By Weak N., 〈f1, . . . , fm, 1− yf 〉 = k[x, y], so

1 =
(∑

ci(x, y)fi(x)
)

+ d(x, y)(1− yf (x)),

so

1 =
∑

ci

(
x,

1
f (x)

)
fi(x) + d

(
x,

1
f (x)

)(
1− f (x)

f (x)

)
=
∑

ci

(
x,

1
f (x)

)
fi(x),

so, clearing denominators,

f k(x) =
∑

Ci(x)fi(x) ∈ 〈f1(x), . . . , fm(x)〉

showing f ∈
√
〈f1, . . . , fm〉. 2
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Reformulations of the Weak Nullstellensatz

First, the k-algebra retraction ρ : k[x]→ k : x 7→ a (ρ = idempotent
endomorphism onto the subring of constants) has kernel
〈x1 − a1, . . . , xn − an〉, which is a maximal ideal in k[x] since ρ maps onto a
simple ring. Every kernel of a retraction of k[x] onto k has the form
〈x1 − a1, . . . , xn − an〉 = I(a).

(Weak Nullstellensatz) If k is alg.cl. and f , fi ∈ k[x], then V(f1, . . . , fm) = ∅
implies 〈f1, . . . , fm〉 = k[x].

Other forms: If k is alg.cl. and f , fi ∈ k[x], then

1 (Reformulation 1) If 〈f1, . . . , fm〉 < k[x], then (∃a)(
∧

i(fi(a) = 0)).
2 (Reformulation 2) V(m) 6= ∅ for any maximal m� k[x].
3 (Reformulation 3) Maximal ideals of k[x] have the form

m = 〈x1 − a1, . . . , xn − an〉.
4 (Reformulation 4) The maximal ideals m� k[x] are exactly the kernels of

k-algebra retractions ρ : k[x]→ k.
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Weak Nullstellensatz requires k to be algebraically closed

Example. R[x] has maximal ideals of the form 〈x− a〉 for a ∈ R, which
correspond to points of R1, and which are the kernels of retractions of R[x]
onto R, but there are other maximal ideals (=closed points of Spec(R[x]))
which come from algebraic extensions of R. Namely, those of the form
〈x2 + bx + c〉 where b2 − 4c < 0.
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Weak Nullstellensatz from Zariski’s Lemma

Recall: (Zariski’s Lemma) Let K/k be a field extension. If K is f.g. as a
k-algebra, then K is f.g. as a k-module.

Zariski implies WN.
Let m� k[x] be maximal. Let K = k[x]/m. The embedding
ε : k→ k[x]→ k[x]/m = K makes K a f.g. k-algebra. By Zariski, K is a f.g.
algebraic extension of k. Since k is alg.cl., ε : k→ K is surjective. Thus m is
the kernel of a retraction k[x]→ k. 2
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Proof of Zariski’s Lemma

(Zariski’s Lemma) Let K/k be a field extension. If
K = k[x1, . . . , xn]/I = k[a1, . . . , an], then K/k is a finite dimensional field
extension.

Proof. Induction on n.
True when n = 1, since k[a1] is not a field if a1 is transcendental over k, and is
a finite dimensional field extension of k if a1 is algebraic over k.

Let A = k[a1] and let k′ = k(a1) ≤ K. K = k[a1, . . . , an] = k′[a2, . . . , an], so,
by induction, K is a finite dimensional field extension of k′. Each ai, i > 1,
satisfies a monic polynomial pi(X) over k′ = k(a1). If a1 is algebraic over k,
then k ≤fin k′ ≤fin K, done. Assume that a1 is transcendental over k.
A = k[a1] ∼= k[x] and k′ ∼= k(x). Let f ∈ A be the product of all denominators
of coefficients of the pi(X) when considered as rational functions in a1. Each
ai, i > 1, is integral over Af . Since Af ≤int Af [a2, . . . , an] = Kfield, Af is a
field. This is impossible, since A ∼= k[x] has infinitely many primes and f 6= 0
cannot be divisible by all of them. 2
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Dissection of the Nullstellensatz

1 (Weak N.) If k is algebraically closed, then the map
a 7→ {a}⊥ = I(a) = 〈x1 − a1, . . . , xn − an〉 is a bijection from kn onto
the set of closed points of Spec(k[x]).
This is an injection for any field k, but a bijection if k is alg.cl.

2 (Weak N. implies Strong N.) Every closed subset V(I) ⊆ Spec(k[x]) is
the closure of its subset of closed points.
(Sloganization: “Closed points are dense in V(I)”.)
Equivalently, for any I � k[x], the intersection of the prime ideals
containing I equals the intersection of the maximal ideals containing I.
Equivalently, for any I � k[x], the nilradical equals the Jacobson radical
(
√

I = J(I)).
The fact that the nilradical of an ideal equals its Jacobson radical holds
for any polynomial ring over field k. A ring A is a Hilbert-Jacobson ring
if
√

I = J(I) for any I � A. Any field is H-J, and A is H-J iff A[x] is.
(See Section 4.5 of Eisenbud.)
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