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Products

[Universal arrow diagram for products goes here.]

[Product diagram goes here.]

The universal property of (A× B, pA, pB) expresses the fact that

HomC(X,A× B)→ HomC(X,A)× HomC(X,B) : f 7→ (pA ◦ f , pB ◦ f )

is a bijection. A notation for the inverse of this bijection is α× β ←[ (α, β).
Thus A× B provides a way to combine the data of a pair of morphisms with
common domain X

α : X → A, β : X → B

into the data of a single morphism

α× β : X → A× B.
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Covariant representable hom functor

Given an object R of C,

HR : C → Set : A 7→ HomC(R,A)

is the object part of a functor. The morphism part is HR(f ) = f ◦ . (Check.)
Here, for f : A→ B,

f ◦ : HomC(R,A)→ HomC(R,B) : g 7→ f ◦ g.

[Picture might help.]

With this concept, the bijection from HomC(X,A× B) to
HomC(X,A)× HomC(X,B) may be expressed as
HX(A× B) ∼= HX(A)× HX(B), or “representable hom functors preserve
products”.

In particular, if the underlying set functor U : C → Set is representable, then
the underlying set of a product is the product of the underlying sets of the
factors.
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Structure of products

This explains why products are Cartesian products in many concrete categories, like
CRng, R-Mod, Top, Posets. A category theorist might say “the forgetful functor
creates products” in these cases.

Thm. The underlying set of a product of rings R and S is the Cartesian product of the
factors. The projection maps of the product are the Cartesian projections
(pR(r, s) = r, pS(r, s) = s). The ring structure is the weakest ring structure on the
product set R× S for which pR and pS are ring morphisms. This is the structure where
operations act coordinatewise.

Partial proof.
Given α : X → R, β : X → S, must show that there is a unique γ : X → R× S such
that (α, β) = (pR ◦ γ, pS ◦ γ). Only choice for γ is γ(x) := (α(x), β(x)). Must check
that γ is a homomorphism.

γ(x + y) = (α(x + y), β(x + y))
= (α(x) + α(y), β(x) + β(y))
= (α(x), β(x)) + (α(y), β(y))
= γ(x) + γ(y).2
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Coproducts

Everything is dual for coproducts.
Universal property may be described by

[Diagram]

This may be expressed as HomC(A t B,X) ∼= HomC(A,X)× HomC(B,X).
A coproduct combines the data of a pair of morphisms with common
codomain into the data of a single morphism.
Contravariant hom functors convert coproducts to products.
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Coproduct of modules

Thm. Coproduct of R-modules M and N is (M ⊕ N, ιM, ιN),
ιM : M → M ⊕ N : m 7→ (m, 0), ιN : N → M ⊕ N : n 7→ (0, n).

Partial proof.
Given α : M → X, β : N → X, must show that there is a unique
γ : M ⊕ N → X such that (α, β) = (γ ◦ ιM, γ ◦ ιN). Only choice for γ is
γ(m, n) := α(m) + β(n). (We just asserted that (αt β)(x, y) = α(x) + β(y)!)
Must check that γ is a homomorphism.

γ(r(m, n)) = γ(rm, rn)
= α(rm) + β(rn)
= rα(m) + rβ(n)
= r(α(m) + β(n))
= rγ(m, n)2
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γ(m, n) := α(m) + β(n). (We just asserted that (αt β)(x, y) = α(x) + β(y)!)
Must check that γ is a homomorphism.

γ(r(m, n)) = γ(rm, rn)
= α(rm) + β(rn)
= rα(m) + rβ(n)
= r(α(m) + β(n))
= rγ(m, n)2
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Biproduct

If A = {Ai | i ∈ I} and B = {Bj | j ∈ J} are sets of objects, and we are given
a single fij : Ai → Bj for each i and j, then all of this data can be combined into
the data of a single morphismti∈Ifi1

ti∈Ifi2
...

 :
∐

Ai →
∏

Bj

When A = B = {M,N}, which are R-modules, and the maps are
id : M → M, 0 : M → N, 0 : N → M, id : N → N, then the combined map is
an isomorphism [

1 0
0 1

]
: M ⊕ N ∼−→ M × N.

We call (M ⊕ N, pM, pN , ιM, ιN) the biproduct of M and N.
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