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Covariant representable hom functor

Given an object R of C,
Hg : C — Set : A — Hom¢(R,A)

is the object part of a functor. The morphism part is Hg(f) = f o _. (Check.)
Here, forf : A — B,

fo_:Hom¢(R,A) — Hom¢(R,B) : g — fog.

[Picture might help.]

With this concept, the bijection from Hom¢ (X, A x B) to

Hom¢ (X, A) x Home (X, B) may be expressed as

Hx(A x B) = Hx(A) x Hx(B), or “representable hom functors preserve
products”.

In particular, if the underlying set functor U : C — Set is representable, then
the underlying set of a product is the product of the underlying sets of the

factors.
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Coproduct of modules

Thm. Coproduct of R-modules M and N is (M @ N, ty, ty),
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If A={A;|i€I}and B = {B;j|j € J} are sets of objects, and we are given
asingle f; : A; — B; for each i and j, then all of this data can be combined into
the data of a single morphism
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If A={A;|i€I}and B = {B;j|j € J} are sets of objects, and we are given
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When A = B = {M, N}, which are R-modules, and the maps are
d:M—-MO0:M—->N,O:N—-M,id: N — N,
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When A = B = {M, N}, which are R-modules, and the maps are
d:M—-MO0:M—N,0: N— M,id : N — N, then the combined map is
an isomorphism

[(1) ﬂ “M&N S M xN.
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If A={A;|i€I}and B = {B;j|j € J} are sets of objects, and we are given
asingle f; : A; — B; for each i and j, then all of this data can be combined into
the data of a single morphism
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When A = B = {M, N}, which are R-modules, and the maps are
d:M—-MO0:M—N,0: N— M,id : N — N, then the combined map is
an isomorphism

[(1) ﬂ “M&N S M xN.

We call (M & N, pm, pn, tm, tn) the biproduct of M and N.
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