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Some radicals

The Wedderburn radical of a ring is the sum of all nilpotent ideals.

Joseph Wedderburn proved that if R is a finite dimensional algebra over C,
then R/W = M, (C) x --- x M, (C).

The Wedderburn radical was generalized in a satisfactory way to arbitrary
rings/algebras by his student Nathan Jacobson.

An element r € R belongs to the Jacobson radical of R if it acts nilpotently on
all left R-modules of finite length. This is equivalent to saying that rS = {0}
whenever S is a simple R-module.
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Equivalent conditions

Theorem

The following are equivalent for r € R:
Q 1S = {0} for every simple R-module S.
Q r lies in every maximal left ideal of R.
© 1 — sris left invertible for any s € R.

Q 1 — srtis a unit for any s,t € R.

The set of elements having these properties is the Jacobson radical, J(R).

Facts/Terminology.
@ J(R) = () max left ideals = a 2-sided ideal.
Q@ M CJR).
© Makes sense to talk about the Jacobson radical of an ideal,
J(I) = ﬂlgM,Mmax M.
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Df. If M is an R-module, then J(M) := (\y_y N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module gR.

Examples. (R = Z)
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J(Z) ={0}; J(Zs) =2Zs; J(Q) =Q.
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Df. If M is an R-module, then J(M) := (\y_y N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module gR.

Examples. (R = Z)

J(Z) ={0}; J(Za) =2Z4; J(Q)=Q.

Lemma. JM C J(M). If M is finitely generated and # {0}, then J(M) < M.
Proof.

(Ist claim) If N < M, then M /N is simple, soJ - M/N =0 = J(M/N), so
JM C N. N was arbitrary, so JM C (y_y N =J(M). O

(2nd claim) If {m;, ..., m,} is a minimal generating set for M
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Jacobson radical of a module

Df. If M is an R-module, then J(M) := (\y_y N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module gR.

Examples. (R = Z)
J(Z) ={0}; J(Zs) =2Zs; J(Q) =Q.

Lemma. JM C J(M). If M is finitely generated and # {0}, then J(M) < M.
Proof.

(Ist claim) If N < M, then M /N is simple, soJ - M/N =0 = J(M/N), so
JM C N. N was arbitrary, so JM C (y_y N =J(M). O

(2nd claim) If {m;,...,m,} is a minimal generating set for M and
N = (my,...,my_1),
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Jacobson radical of a module

Df. If M is an R-module, then J(M) := (\y_y N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module gR.

Examples. (R = Z)
J(Z) ={0}; J(Zs) =2Zs; J(Q) =Q.

Lemma. JM C J(M). If M is finitely generated and # {0}, then J(M) < M.
Proof.

(Ist claim) If N < M, then M /N is simple, soJ - M/N =0 = J(M/N), so
JM C N. N was arbitrary, so JM C (y_y N =J(M). O

(2nd claim) If {m;,...,m,} is a minimal generating set for M and
N = (my,...,m,_1), then there is a submodule N’ satisfying N < N < M.
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Jacobson radical of a module

Df. If M is an R-module, then J(M) := (\y_y N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module gR.

Examples. (R = Z)
J(Z) ={0}; J(Zs) =2Zs; J(Q) =Q.

Lemma. JM C J(M). If M is finitely generated and # {0}, then J(M) < M.

Proof.
(Ist claim) If N < M, then M /N is simple, soJ - M/N =0 = J(M/N), so
JM C N. N was arbitrary, so JM C (y_y N =J(M). O

(2nd claim) If {m;,...,m,} is a minimal generating set for M and
N = (my,...,m,_1), then there is a submodule N’ satisfying N < N < M.
Hence J(M) < N' < M.
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Jacobson radical of a module

Df. If M is an R-module, then J(M) := (\y_y N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module gR.

Examples. (R = Z)
J(Z) ={0}; J(Zs) =2Zs; J(Q) =Q.

Lemma. JM C J(M). If M is finitely generated and # {0}, then J(M) < M.

Proof.
(Ist claim) If N < M, then M /N is simple, soJ - M/N =0 = J(M/N), so
JM C N. N was arbitrary, so JM C (y_y N =J(M). O

(2nd claim) If {m;,...,m,} is a minimal generating set for M and
N = (my,...,m,_1), then there is a submodule N’ satisfying N < N < M.
Hence J(M) < N' <M. O

Jacobson Radical, Nakayama’s Lemma



Nakayama’s Lemma = Krull-Azumaya Theorem

Jacobson Radical, Nakayama’s Lemma



Nakayama’s Lemma = Krull-Azumaya Theorem

Nakayama’s Lemma. If M is a finitely generated R-module and JM = M,
then M = {0}.
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The traditional proof of Nakayama’s Lemma is based on the Cayley-Hamilton
Theorem for commutative rings.
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Nakayama’s Lemma = Krull-Azumaya Theorem

Nakayama’s Lemma. If M is a finitely generated R-module and JM = M,
then M = {0}.

Nontraditional Proof. M # {0}, then JIM < J(M) < M. O

The traditional proof of Nakayama’s Lemma is based on the Cayley-Hamilton
Theorem for commutative rings.
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Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.

a b
w0
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.
IfM = [CCI Z} , then xu (1) = 12 — tr(M)t + det(M).
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.
IfM = [Ccl Z} , then xy/(¢) = £ — tr(M)t + det(M). C-H asserts that

M? —tr(M)M + det(M)I = 0.
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.
IfM = [Ccl Z} , then xy/(¢) = £ — tr(M)t + det(M). C-H asserts that

M? — tr(M)M + det(M)I = 0. More explicitly,

a®> +bc ab+ bd a b 1 0 00
[ac—i—cd bc+d2]_(a+d) [c d]+(“d_bc) [o 1}_[0 o]'
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.
IfM = [Ccl Z} , then xy/(¢) = £ — tr(M)t + det(M). C-H asserts that

M? — tr(M)M + det(M)I = 0. More explicitly,

a®> +bc ab+ bd a b 1 0 00
[ac—i—cd bc+d2]_(a+d) [c d]+(“d_bc) [o 1}_[0 o]'

C-H for 2 x 2 matrices is equivalent to
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M € M, (F) satisfies its own
characteristic polynomial.

Example.
IfM = [Ccl Z} , then xy/(¢) = £ — tr(M)t + det(M). C-H asserts that
M? — tr(M)M + det(M)I = 0. More explicitly,

a b

a®> +bc ab+ bd 1 0 00
[ac—i—cd bc+d2] (“+d)[ d] (“d_bc)[o 1}_[0 o]'

C-H for 2 x 2 matrices is equivalent to

(Va)(vb)(Vc)(vd)

(a®> +bc) — (a+d)a+ (ad — bc)l  =0)
(ab+bd) — (a+d)b+ (ad —bc)0 =0)
(ac + cd) — (a+d)c+ (ad — bc)0 = 0)
( 0)

(
A
A
AN ((be+d?) — (a+d)d+ (ad —bc)l =
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Thm. Any positive universal first-order sentence true in all fields is true in all
commutative rings.
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Thm. Any positive universal first-order sentence true in all fields is true in all

commutative rings.

Roughly speaking:
Q first-order = well-formed, finite length, quantification over elements of
the first order only.
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Thm. Any positive universal first-order sentence true in all fields is true in all

commutative rings.

Roughly speaking:
Q first-order = well-formed, finite length, quantification over elements of
the first order only.
(Can be written: (quantifiers)[\/(/\ Zatomic)].)

© universal =
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Transfer Theorem (calglp8: Toby, Ezzeddine, Howie)

Thm. Any positive universal first-order sentence true in all fields is true in all
commutative rings.

Roughly speaking:
Q first-order = well-formed, finite length, quantification over elements of

the first order only.
(Can be written: (quantifiers)[\/(/\ Zatomic)].)

@ universal = all quantifiers are V.

© positive = no occurrence of —, when written in prenex form.
(+atomic is always +atomic.)

@ sentence =
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Transfer Theorem (calglp8: Toby, Ezzeddine, Howie)

Thm. Any positive universal first-order sentence true in all fields is true in all
commutative rings.

Roughly speaking:
Q first-order = well-formed, finite length, quantification over elements of

the first order only.
(Can be written: (quantifiers)[\/(/\ Zatomic)].)

@ universal = all quantifiers are V.

© positive = no occurrence of —, when written in prenex form.
(+atomic is always +atomic.)

@ sentence =
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Transfer Theorem (calglp8: Toby, Ezzeddine, Howie)

Thm. Any positive universal first-order sentence true in all fields is true in all
commutative rings.

Roughly speaking:
Q first-order = well-formed, finite length, quantification over elements of

the first order only.
(Can be written: (quantifiers)[\/(/\ Zatomic)].)

@ universal = all quantifiers are V.

© positive = no occurrence of —, when written in prenex form.
(+atomic is always +atomic.)

@ sentence = all variables bound by quantifiers.
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Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /.
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /.

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume x4(t) =" — a;" L 4+ - + (=1)"a,
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /.

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume x4(t) =" —ait" '+ -+ (=1)"ag, a; € .
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume xa(f) = 1" —ait" ' + - + (=1)"ap, a; € I. (C-H)
0 = xa(id)
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume x4 () ait" '+ -+ (=1)"ap, a; € I. (C-H)

=" —
0= xa(id) = xa(A1)
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume x4(t) = " —at" ' + - + (=1)"ap, a; € I. (C-H)
0= xa(id) = xa(\) = X —a@ X7 - (= 1)"a,
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume x4(t) = " —at" ' + - + (=1)"ap, a; € I. (C-H)
OZXA(id) :XA( ) )\"—al)\" 1 --—I—(—l)"ao, :)\XA(I)'
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume x4(t) = " —at" ' + - + (=1)"ap, a; € I. (C-H)
OZXA(id) :XA( ) )\"—al)\" 1 --—I—(—l)"ao, :)\XA(I)'
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with

coefficients in /.
i

i2
Ifmy =iymy +--- + iymy,, then A =
In
Assume x4(t) = " —at" ' + - + (=1)"ap, a; € I. (C-H)
0 =xa(id) = xa(\) = M —arX]7 + -+ (=1)"ao, = A\, (1)

Now x4(1) =1 —iforsomei € I,
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with

coefficients in /.
i

i2
Ifmy =iymy +--- + iymy,, then A =
In
Assume x4(t) = " —at" ' + - + (=1)"ap, a; € I. (C-H)
0 =xa(id) = xa(\) = M —arX]7 + -+ (=1)"ao, = A\, (1)

Now x4(1) =1 —iforsomei € I,s0 (1 —i)M = 0 for some i € I.
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /.

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume xa(f) = 1" —ait" ' + - + (=1)"ap, a; € I. (C-H)
OZXA(id) :XA( ) )\"—al)\" 1 --—I—(—l)"ao, :)\XA(I)'

Now x4(1) =1 —iforsomei € I,s0 (1 —i)M = 0 for some i € I.

If I = J, then 1 — i is a unit that acts like O on M.
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume xa(f) = 1" —ait" ' + - + (=1)"ap, a; € I. (C-H)
OZXA(id) :XA( ) )\"—al)\" 1 --—I—(—l)"ao, :)\XA(I)'

Now x4(1) =1 —iforsomei € I,s0 (1 —i)M = 0 for some i € I.

If I = J, then 1 — i is a unit that acts like O on M. Conclusion: M = 0.
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Traditional proof of Nakayama’s Lemma

Assume that M = (my, ..., m,,) and M = IM for some ideal /.

The identity function on M is representable as an n X n matrix A with
coefficients in /. .

I

i
Ifmy =iymy +--- + iymy,, then A =

In

Assume xa(f) = 1" —ait" ' + - + (=1)"ap, a; € I. (C-H)
OZXA(id) :XA( ) )\"—al)\" 1 --—I—(—l)"ao, :)\XA(I)'

Now x4(1) =1 —iforsomei € I,s0 (1 —i)M = 0 for some i € I.

If I = J, then 1 — i is a unit that acts like O on M. Conclusion: M = 0. O
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Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = () < R[t].
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.

Jacobson Radical, Nakayama’s Lemma 10/11



Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].

Choose m € ker(f).
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].

Choose m € ker(f). 0 = (1 — st)m
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].

Choose m € ker(f). 0 = (1 — st)m = m — s(f)(f(m))
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].

Choose m € ker(f). 0 = (1 — st)m = m — s(f)(f(m)) = m,

Jacobson Radical, Nakayama’s Lemma 10/11



Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].

Choose m € ker(f). 0 = (1 — st)m = m — s(f)(f(m)) = m, so ker(f) = 0.

Jacobson Radical, Nakayama’s Lemma 10/11



Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f M — M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[f]-module by defining ¢ - m = f(m).

Let I = (t) < R[t]. M = IM, since f is surjective.

By argument on previous page, 3i € I = (¢) such that (1 — )M = {0}.
Assume i = st for some s € R[f].

Choose m € ker(f). 0 = (1 — st)m = m — s(f)(f(m)) = m, so ker(f) = 0.
a

Jacobson Radical, Nakayama’s Lemma 10/11



Jacobson rings
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Jacobson rings

If R is a commutative ring and I </ R, then r(I) C J(I).
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