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Some radicals

The Wedderburn radical of a ring is the sum of all nilpotent ideals.

Joseph Wedderburn proved that if R is a finite dimensional algebra over C,
then R/W ∼= Mn1(C)× · · · ×Mnk(C).

The Wedderburn radical was generalized in a satisfactory way to arbitrary
rings/algebras by his student Nathan Jacobson.

An element r ∈ R belongs to the Jacobson radical of R if it acts nilpotently on
all left R-modules of finite length. This is equivalent to saying that rS = {0}
whenever S is a simple R-module.
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Equivalent conditions

Theorem
The following are equivalent for r ∈ R:

1 rS = {0} for every simple R-module S.
2 r lies in every maximal left ideal of R.
3 1− sr is left invertible for any s ∈ R.
4 1− srt is a unit for any s, t ∈ R.

The set of elements having these properties is the Jacobson radical, J(R).

Facts/Terminology.

1 J(R) =
⋂

max left ideals = a 2-sided ideal.
2 N ⊂ J(R).
3 Makes sense to talk about the Jacobson radical of an ideal,

J(I) =
⋂

I⊆M,Mmax M.
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Some proofs

Theorem. TFAE

1 rS = {0} for every simple R-module S.
2 r lies in every maximal left ideal M ≺ R.
3 1− sr is left invertible for any s ∈ R.

(1)⇒ (2): r(R/M) = {0}, so ∀M ≺ R(r ∈ M).

((2) ∧ ¬(3))⇒ ⊥: If ∃s0(1− s0r not left invertible), then R(1− s0r) 6= R, so
∃Mmax(R(1− s0r) ≤ M). But r ∈ M, so s0r ∈ M, so (1− s0r) + s0r = 1 ∈ M, ⊥

¬(1)⇒ ¬(3): If rS 6= {0}, ∃x ∈ S(rx 6= 0), then since RrS = S ∃s ∈ R(srx = x),
implying (1− sr)x = 0, so (1− sr) cannot be left invertible. 2
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Jacobson radical of a module

Df. If M is an R-module, then J(M) :=
⋂

N≺M N.

Hence the Jacobson radical of R is the same whether R is considered as a ring
or as the R-module RR.

Examples. (R = Z)
J(Z) = {0}; J(Z4) = 2Z4; J(Q) = Q.

Lemma. JM ⊆ J(M). If M is finitely generated and 6= {0}, then J(M) � M.

Proof.
(1st claim) If N ≺ M, then M/N is simple, so J ·M/N = 0 = J(M/N), so
JM ⊆ N. N was arbitrary, so JM ⊆

⋂
N≺M N = J(M). 2

(2nd claim) If {m1, . . . ,mn} is a minimal generating set for M and
N = 〈m1, . . . ,mn−1〉, then there is a submodule N′ satisfying N ≤ N′ ≺ M.
Hence J(M) ≤ N′ � M. 2
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Nakayama’s Lemma = Krull-Azumaya Theorem

Nakayama’s Lemma. If M is a finitely generated R-module and JM = M,
then M = {0}.

Nontraditional Proof. M 6= {0}, then JM ≤ J(M) � M. 2

The traditional proof of Nakayama’s Lemma is based on the Cayley-Hamilton
Theorem for commutative rings.
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem for fields. Any M ∈ Mn(F) satisfies its own
characteristic polynomial.

Example.

If M =

[
a b
c d

]
, then χM(t) = t2 − tr(M)t + det(M). C-H asserts that

M2 − tr(M)M + det(M)I = 0. More explicitly,[
a2 + bc ab + bd
ac + cd bc + d2

]
− (a + d)

[
a b
c d

]
+ (ad − bc)

[
1 0
0 1

]
=

[
0 0
0 0

]
.

C-H for 2× 2 matrices is equivalent to

(∀a)(∀b)(∀c)(∀d)
((a2 + bc)− (a + d)a + (ad − bc)1 = 0)

∧ ((ab + bd)− (a + d)b + (ad − bc)0 = 0)
∧ ((ac + cd)− (a + d)c + (ad − bc)0 = 0)
∧ ((bc + d2)− (a + d)d + (ad − bc)1 = 0)
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Transfer Theorem (calg1p8: Toby, Ezzeddine, Howie)

Thm. Any positive universal first-order sentence true in all fields is true in all
commutative rings.

Roughly speaking:

1 first-order = well-formed, finite length, quantification over elements of
the first order only.
(Can be written: (quantifiers)[

∨
(
∧
±atomic)].)

2 universal = all quantifiers are ∀.
3 positive = no occurrence of ¬, when written in prenex form.

(±atomic is always +atomic.)
4 sentence = all variables bound by quantifiers.
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Traditional proof of Nakayama’s Lemma

Assume that M = 〈m1, . . . ,mm〉 and M = IM for some ideal I.

The identity function on M is representable as an n× n matrix A with
coefficients in I.

If m1 = i1m1 + · · ·+ inmn, then A =


i1 · · · · · ·
i2 · · · · · ·
...
in · · · · · ·

.

Assume χA(t) = tn − a1tn−1 + · · ·+ (−1)na0, ai ∈ I. (C-H)
0 = χA(id) = χA(λ1) = λn

1 − a1λ
n−1
1 + · · ·+ (−1)na0, = λχA(1).

Now χA(1) = 1− i for some i ∈ I, so (1− i)M = 0 for some i ∈ I.

If I = J, then 1− i is a unit that acts like 0 on M. Conclusion: M = 0. 2
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Extra mileage from the nontraditional proof

Extra Mileage Theorem. Let M be a finitely generated R-module. If
f : M → M is a surjective homomorphism, then f must be injective.

Proof.
Make M an R[t]-module by defining t · m = f (m).

Let I = (t)� R[t]. M = IM, since f is surjective.

By argument on previous page, ∃i ∈ I = (t) such that (1− i)M = {0}.
Assume i = st for some s ∈ R[t].

Choose m ∈ ker(f ). 0 = (1− st)m = m− s(f )(f (m)) = m, so ker(f ) = 0.
2
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Jacobson rings

If R is a commutative ring and I � R, then r(I) ⊆ J(I). If equality holds for all
I, then R is a Jacobson ring.

Examples.

1 Z.
2 Any field.
3 R[x], if R is Jacobson.
4 R/I, if R is Jacobson.
5 Any ring whose prime ideals are intersections of maximals.
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