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Df. If A < B are commutative rings, then b € B is integral over A if any of the
following equivalent conditions is satisfied.

@ b satisfies a monic polynomial over A: p(b) = 0, p(x) € A[x].
@ The A-algebra A[b] < B is finitely generated as an A-module.

@ There exists an A-algebra C with A[b] C C C B where C is finitely
generated as an A-module.

Thm. The set of elements of B integral over A is closed under plus and times.

Proof. IfA[b] = (1,b, ..., 0" Y4 _moda» Alc] = (1, ¢, ..., " ') a_Mod, then
Alb + ¢, Albe] < Alb,c] = ({b'd|i < m,j < n})a-moa (= C from (3)). O

Df. The set of elements of B integral over A is the integral closure of A in B.
(Leave off the phrase “in B” if A is an integral domain and B is its field of
fractions.)
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Integral closure: Algebraic number rings

Assume that K is a finite extension of Q. The integral closure of Z in K is
written Ok and is called the ring of integers in K.

Examples.
@ Assume that K = Q[/m] where m € Z is square-free.
O Ifm=2,3 (mod 4), then Ox = Z[/m] = {a+ b\/m | a,b € Z}.
@ Ifm=1 (mod 4),then Ox = Z [% .
@ Ifw is aroot of unity and K = Q[w], then Ok = Z[w].
@ The integral closure of Z[2i] is Z]i].
@ Every UFD is integrally closed. (Rational root theorem.)
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a* : Spec(B) — Spec(A) when o« : A — B

Cohen-Seidenberg Theorems. If o : A g B, then
@ (Lying over) o™ : Spec(B) — Spec(A) is surjective.
@ (Incomparability) If a*(q) = a*(t), then q and v are incomparable.

© (Going up) Any finite ascending chain of primes of A is the contraction
of a finite ascending chain of primes of B.

@ (Going down) Any finite descending chain of primes of A is the
contraction of a finite descending chain of primes of B, provided A and B
are domains and A is integrally closed.
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'+ a,_ 1" '+ - +ay = 0. Then ay # 0, so multiply by b~! & solve for it
b~' = —ay (B + a1 b2+ -+ ay) €B.

[«<] Choose a € A — {0}.
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Let v be a maximal ideal of By,.
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Thm. If A <, B and p is a prime of A, then p = q° for some prime q of B.

Proof. Consider commutative

A int B
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int
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Let v be a maximal ideal of By,. Restrict t to A in two ways.
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Going Up

Thm. If A <iy B,

P Cpy
is a chain of primes in A, and

qi - - C m
is a chain of primes in B satisfying qf = p; fori = 1,...,m (< n), then the
g-chain can be extended to a length-n chain (qf = p; fori =1,...,n).
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Going Up

Thm. If A <iy B,

P Cpy
is a chain of primes in A, and

qi - - C m
is a chain of primes in B satisfying qf = p; fori = 1,...,m (< n), then the
g-chain can be extended to a length-n chain (qf = p; fori =1,...,n).

Proof. Suffices to show how to increment one step, so assume m = 1,n = 2.
Let B=B/qand A =A/q{ = A/p;.
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P, yields a prime qp <I B satisfying q; C g2 and q§ = pp. O

Cor. If A <;x B and either has finite Krull dimension, then both have the
same Krull dimension.
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Thm. If A <iy B,

P Cpy
is a chain of primes in A, and

qi - - C m
is a chain of primes in B satisfying qf = p; fori = 1,...,m (< n), then the
g-chain can be extended to a length-n chain (qf = p; fori =1,...,n).

Proof. Suffices to show how to increment one step, so assume m = 1,n = 2.
Let B=B/q; and A = A/q{ = A/p;. We still have A <;, B, but now we

focus on primes (0) C p, in A, and (0) in B. Any prime §, <I B that lies over
P, yields a prime q, <1 B satisfying q; C g2 and g5 = p>. O

Cor. If A <;x B and either has finite Krull dimension, then both have the
same Krull dimension. (So any number ring has Krull dimension 1.)
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Thm. Assume that A <j,; B are integral domains and A is integrally closed. If

P2 2pn
is a chain of primes in A, and

g 2 - 2 qm
is a chain of primes in B satisfying q¢ = p; fori = 1,...,m (< n), then the
g-chain can be extended to a length-n chain (qf = p; fori =1,...,n).
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Thm. Assume that A <j,; B are integral domains and A is integrally closed. If

P2 2pn
is a chain of primes in A, and

g 2 - 2 qm
is a chain of primes in B satisfying q¢ = p; fori = 1,...,m (< n), then the
g-chain can be extended to a length-n chain (qf = p; fori =1,...,n).

Proof. See AM Theorem 5.16, or Eisenbud Theorem 13.9. O

Df. A ring extension A < B has the “going up” or “going down” property if
chains or primes can be extended as appropriate.
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Lemma. Let K /k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = klay,...,q,,...,a,] whereay, ..., a, are a
transcendence base for K over k. Replace k by k(ay, .. .,a,—1) to reduce to the
case t = 1. If A = k[a;], then Jc € k[a;] — {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c|, so A[1/c] is a field. But

A = k[a;] = k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. O

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[xy, . .., x,] has finite index.)
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