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Integral elements

Recall that an element α ∈ C is an algebraic integer if it is a root of a monic
integer polynomial. (E.g., i is a root of x2 + 1 = 0, 3

√
2 is a root of x3− 2 = 0.)

This property is equivalent to the property that the subring 〈α〉Rng of C that is
generated by α has a finitely generated additive subgroup. (I.e., the additive
reduct 〈1, α, α2, . . .〉AbGrp is finitely generated.)

Proof of equivalence:
If α satisfies xn = an−1xn−1 + · · ·+ a1x + a0, then for all k we have
αn+k = an−1α

n+k−1 + · · ·+ a1α
k+1 + a0α

k, so

〈α〉Rng = 〈1, α, α2, . . .〉AbGrp = 〈1, α, . . . , αn−1〉AbGrp

Conversely, if 〈α〉Rng = 〈1, α, α2, . . .〉AbGrp = 〈f1, f2, . . . , fn〉AbGrp, then

(∃m) 〈α〉Rng = 〈1, α, α2, . . . , αm−1〉AbGrp,

so αm = bm−1α
m−1 + · · ·+ b1α+ b0, so α satisfies

xm = bm−1xm−1 + · · ·+ b1x + b0. 2
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Generalization

Df. If A ≤ B are commutative rings, then b ∈ B is integral over A if any of the
following equivalent conditions is satisfied.

1 b satisfies a monic polynomial over A: p(b) = 0, p(x) ∈ A[x].
2 The A-algebra A[b] ≤ B is finitely generated as an A-module.
3 There exists an A-algebra C with A[b] ⊆ C ⊆ B where C is finitely

generated as an A-module.

Thm. The set of elements of B integral over A is closed under plus and times.

Proof. If A[b] = 〈1, b, . . . , bm−1〉A−Mod, A[c] = 〈1, c, . . . , cn−1〉A−Mod, then
A[b + c],A[bc] ≤ A[b, c] = 〈{bicj|i < m, j < n}〉A−Mod (= C from (3)). 2

Df. The set of elements of B integral over A is the integral closure of A in B.
(Leave off the phrase “in B” if A is an integral domain and B is its field of
fractions.)
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Some properties

Transitivity of Integrality. If A ≤int B ≤int C, then A ≤int C.

Proof. If c ∈ C, then cn = bn−1cn−1 + · · ·+ b0. Assume that
bkr

r = ar,kr−1bkr−1
r + · · ·+ ar,0. Then A[c] is an A-submodule of

〈{ci | i < n} ∪ {bj
r | j < kr, r < n}〉. 2

Localization. If A ≤int B and S ⊆ A is multiplicatively closed, then
S−1A ≤int S−1B.

Proof. Choose b/s ∈ S−1B. If bn = an−1bn−1 + · · ·+ a0, then
(b/s)n = (an−1/s)(b/s)n−1 + · · ·+ (a0/sn). 2

Quotients. If A ≤int B and I � B, then A/Ic ≤int B/I.

Proof. Similar to the previous one. 2
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Integral closure: Algebraic number rings

Assume that K is a finite extension of Q. The integral closure of Z in K is
written OK and is called the ring of integers in K.

Examples.

1 Assume that K = Q[
√

m] where m ∈ Z is square-free.

1 If m ≡ 2, 3 (mod 4), then OK = Z[
√

m] = {a + b
√

m | a, b ∈ Z}.
2 If m ≡ 1 (mod 4), then OK = Z

[
1+

√
m

2

]
.

2 If ω is a root of unity and K = Q[ω], then OK = Z[ω].
3 The integral closure of Z[2i] is Z[i].
4 Every UFD is integrally closed. (Rational root theorem.)
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α∗ : Spec(B)→ Spec(A) when α : A
int
↪→ B

Cohen-Seidenberg Theorems. If α : A
int
↪→ B, then

1 (Lying over) α∗ : Spec(B)→ Spec(A) is surjective.
2 (Incomparability) If α∗(q) = α∗(r), then q and r are incomparable.
3 (Going up) Any finite ascending chain of primes of A is the contraction

of a finite ascending chain of primes of B.
4 (Going down) Any finite descending chain of primes of A is the

contraction of a finite descending chain of primes of B, provided A and B
are domains and A is integrally closed.
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Preparing for Incomparability/Lying Over

Lm. If A ≤int B are integral domains, then A is a field iff B is a field.

Proof. [⇒] Choose b ∈ B− {0}, and find least-degree monic pol.
bn + an−1bn−1 + · · ·+ a0 = 0. Then a0 6= 0, so multiply by b−1 & solve for it
b−1 = −a−1

0 (bn−1 + an−1bn−2 + · · ·+ a1) ∈ B.

[⇐] Choose a ∈ A− {0}. Then a−1 ∈ B, so ∃ pol.
(a−1)n + an−1(a−1)n−1 + · · ·+ a0 = 0. Then
a−1 = −(an−1 · 1 + · · ·+ a0an−1) ∈ A. 2

Lm. If A ≤int B and q� B is prime, then qc is maximal iff q is maximal.

Proof. A/qc ≤int B/q. 2
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Incomparability

Thm. Assume that A ≤int B and q ⊆ r are primes of B. If qc = rc =: p, then
q = r.

Proof. Consider commutative

A int−−−−→ By y
Ap

int−−−−→ Bp

Let p′ be the extension of p to Ap, and let q′ ⊆ r′ be the extensions of q ⊆ r to
Bp. Necessarily (q′)c = p′ = (r′)c, so q′ = r′, so q = r. 2
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Lying Over

Thm. If A ≤int B and p is a prime of A, then p = qc for some prime q of B.

Proof. Consider commutative

A int−−−−→ By y
Ap

int−−−−→ Bp

Let r be a maximal ideal of Bp. Restrict r to A in two ways. If q = rc � B,
then qc = p. 2
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Going Up

Thm. If A ≤int B,
p1 ⊆ · · · ⊆ pn

is a chain of primes in A, and

q1 ⊆ · · · ⊆ qm

is a chain of primes in B satisfying qc
i = pi for i = 1, . . . ,m (≤ n), then the

q-chain can be extended to a length-n chain (qc
i = pi for i = 1, . . . , n).

Proof. Suffices to show how to increment one step, so assume m = 1, n = 2.
Let B = B/q1 and A = A/qc

1 = A/p1. We still have A ≤int B, but now we
focus on primes (0) ( p2 in A, and (0) in B. Any prime q2 � B that lies over
p2 yields a prime q2 � B satisfying q1 ⊆ q2 and qc

2 = p2. 2

Cor. If A ≤int B and either has finite Krull dimension, then both have the
same Krull dimension. (So any number ring has Krull dimension 1.)
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Going Down

Thm. Assume that A ≤int B are integral domains and A is integrally closed. If

p1 ⊇ · · · ⊇ pn

is a chain of primes in A, and

q1 ⊇ · · · ⊇ qm

is a chain of primes in B satisfying qc
i = pi for i = 1, . . . ,m (≤ n), then the

q-chain can be extended to a length-n chain (qc
i = pi for i = 1, . . . , n).

Proof. See AM Theorem 5.16, or Eisenbud Theorem 13.9. 2

Df. A ring extension A ≤ B has the “going up” or “going down” property if
chains or primes can be extended as appropriate.
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Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra. There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B. (B is
integral-extension-of-free.)

Proof. See AM Exercise 5.16, or Eisenbud Theorem 13.3. 2

Integral Dependence 12 / 13



Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra.

There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B. (B is
integral-extension-of-free.)

Proof. See AM Exercise 5.16, or Eisenbud Theorem 13.3. 2

Integral Dependence 12 / 13



Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra. There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B.

(B is
integral-extension-of-free.)

Proof. See AM Exercise 5.16, or Eisenbud Theorem 13.3. 2

Integral Dependence 12 / 13



Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra. There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B. (B is
integral-extension-of-free.)

Proof. See AM Exercise 5.16, or Eisenbud Theorem 13.3. 2

Integral Dependence 12 / 13



Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra. There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B. (B is
integral-extension-of-free.)

Proof.

See AM Exercise 5.16, or Eisenbud Theorem 13.3. 2

Integral Dependence 12 / 13



Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra. There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B. (B is
integral-extension-of-free.)

Proof. See AM Exercise 5.16, or Eisenbud Theorem 13.3.

2

Integral Dependence 12 / 13



Noether Normalization

Thm. Let k be a field and let B be a finitely generated k-algebra. There exists
A ≤int B with A ∼= k[y1, . . . , yd], d = Krull dimension of B. (B is
integral-extension-of-free.)

Proof. See AM Exercise 5.16, or Eisenbud Theorem 13.3. 2

Integral Dependence 12 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module.

(That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof.

Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k.

Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1.

If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c],

so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c],

so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field.

But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field.

2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field.

(Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13



Zariski’s Lemma

Lemma. Let K/k be an extension of fields. If K is finitely generated as a
k-algebra, then K is finitely generated as a k-module. (That is, K an algebraic
extension of k.)

Proof. Assume that K = k[a1, . . . , at, . . . , an] where a1, . . . , at are a
transcendence base for K over k. Replace k by k(a1, . . . , at−1) to reduce to the
case t = 1. If A = k[a1], then ∃c ∈ k[a1]− {0} such that all a’s are integral
over A[1/c], so K is integral over A[1/c], so A[1/c] is a field. But
A = k[a1] ∼= k[x] is a PID with infinitely many primes, so A[1/c] cannot be a
field. 2

Cor. A finitely generated ring that is a field is a finite field. (Equivalently,
every maximal ideal of Z[x1, . . . , xn] has finite index.)

Integral Dependence 13 / 13


