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A case of Fermat’s Last Theorem

If (x, y, z) is a nontrivial integer solution to xmn + ymn = zmn, then (xm, ym, zm)
is a nontrivial solution to xn + yn = zn. Thus, if one wants to show that there
are no nontrivial integer solutions to xn + yn = zn, it suffices to establish it
when n is prime. Except, there ARE solutions when n = 2, so suffices to
prove no nontrivial integer solutions when n = 4 or n = odd prime. Euler
showed that there are no nontrivial integer solutions when n = 3, 4. Let’s
consider the equation xn + yn = zn when n = p > 3 is an odd prime. We may
assume that {x, y, z} are pairwise relative prime. We consider only “Case 1”:
p divides none of x, y, z.
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A case of Fermat’s Last Theorem, II

The fact that xp − 1 factors as (x− 1)(x− ω) · · · (x− ωp−1) for ω = e
2πi

p

implies that

zp = xp − (−y)p = (x + y)(x + ωy)(x + ω2y) · · · (x + ωp−1y).

This factorization takes place in A = Z[ω].

Assume that Z[ω] is a UFD.

Claim. Distinct factors fi = x + ωiy and fj = x + ωjy are relatively prime.

Proof. If π is prime dividing x+ωiy and x+ωjy, then (i) π divides z, and (ii) π
divides fi − fj = yωi(1− ωj−i). Since (xp − 1) = (x− 1)(xp−1 + · · ·+ 1), we
get (x− ω) · · · (x− ωp−1) = (xp−1 + · · ·+ 1), so

(1− ω) · · · (1− ωp−1) = p.

Hence yωi(1− ωj−i) divides yp. Now π divides gcd(z, yp) = 1. 2

This forces (x + ωy) = uαp for some u, α ∈ Z[ω], u a unit.
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If u is a unit in Z[ω], then ω/ω is a power of ω.
Hence, if p ≥ 5 and (x + ωy) ≡ uαp (mod p), then x ≡ y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x ≡ y (mod p). The same argument applied to xp + (−z)p = (−y)p

implies that x ≡ −z (mod p). Thus xp + yp = zp reduces mod p to
xp + xp ≡ (−x)p (mod p), or p | 3xp. But p does not divide 3 or xp,
contradiction. 2

Conclusion. There are no Case 1 solutions to xp + yp = zp if p ≥ 5 and Z[ωp]
is a UFD.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[ωp] is a UFD, there can be no
Case 1 solutions to xp + yp = zp. Unique factorization was use to deduce from
zp = (x + y)(x + ωy) · · · (x + ωp−1y) that x + ωy = uαp. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(zp) = (z)p = (x + y)(x + ωy) · · · (x + ωp−1y)

that (x + ωy) = Ip. Now suppose that p is a “regular prime”: If I � Z[ωp] and
Ip is principal, then I is principal. In particular, if (x + ωy) = Ip, then
(x+ωy) = Ip = (α)p = (αp), so (x+ωy) = uαp. If p is a regular prime, then
we can follow the same argument and prove that there are no Case 1 solutions.

p = 23 is regular, Z[ω23] is not a UFD, yet Z[ω23] has unique factorization of
ideals. So we understand FLT for more primes this way.

[Note: The above argument is based on Kummer’s “Main Argument”. He also
proved that FLT holds for regular primes in Case 2, where p | z.]
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Dedekind domains

Definition 1. An integral domain D is a Dedekind domain if every nonzero
ideal factors uniquely into primes ideals.

Fields are considered to be Dedekind domains.

Definition 2. Let D be an integral domain that is not a field. D is a Dedekind
domain if

1 D is Noetherian.
2 D is integrally closed.
3 D has Krull dimension one.

Important examples:

1 The ring of integers OK of an algebraic number field K (= finite
extension of the rationals).

2 the coordinate ring k[C] of a nonsingular curve.
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Dedekind domains = robust generalization of PIDs

“Like a PID”

1 Unique factorization of ideals.
2 Every ideal I of a Dedekind domain D can be 1 1

2 -generated: for all
nonzero a ∈ I, there exists b such that I = (a, b).

3 Finitely generated modules over a Dedekind domain are uniquely
expressible as

torsion free⊕ torsion = ((⊕r
i=1D)⊕ I)⊕ (D/Pe1

1 ⊕ · · · ⊕ D/Pes
s )

where the Pj are nonzero primes.

“Robust generalization”

1 If D is a Dedekind domain, B a domain, D ≤int B is a finite integral
extension, then B is a Dedekind domain.

2 If D is a domain, then Dm is a PID/DD for each maximal m iff D is a
Dedekind domain.
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Our main goals

1 Prove that OK is a Dedekind domain. (Assuming [Q : K] <∞!)

2 Prove the equivalence of the two definitions. (That is, show that an
integral domain has unique factorization of ideals iff it is Noetherian,
integrally closed, and has Krull dimension 1.)

3 (If time) Discuss the ideal class group.
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OK is a Dedekind domain: “easy part”

Claim 1. OK is integrally closed.

Proof. OK is the integral closure of Z in K. 2

Claim 2. OK has Krull dimension 1.

Proof. (dim(Z) = 1) + (Z ≤int OK)+Incomparability+Going Up. 2

Claim 3. OK is Noetherian. (We will prove later that the additive group of OK

is finitely generated as an abelian group.)

Proof. Since Z is Noetherian, and OK is finitely generated as an abelian
group, OK is has ACC on additive subgroups. Hence it has ACC in ideals. 2
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OK is a Dedekind domain: “hard part”

From field theory, if [Q : K] = n, then there is a Q-basis for K: {β1, . . . , βn}.
There exist n Q-independent field embeddings σ : K → C.

Claim 1. We can choose the β’s from OK .

Proof. If β satisfies amxm + am−1xm−1 + · · ·+ a1x + a0 ∈ Z[x], then
α := amβ satisfies xm + amam−1xm−1 + · · ·+ am−1

m a1x + an
ma0 ∈ Z[x]. Hence

any β ∈ K has the form α/k for some α ∈ OK , k ∈ Z. Use the α’s to replace
the β’s if necessary. 2

Claim 2. There is an integer d such that OK ≤ 1
d

⊕n Z.

Proof. For γ ∈ OK , write γ =
∑n

j=1 xjβj, xj ∈ Q. Apply each σi:
σi(γ) =

∑n
j=1 xjσi(βj). Cramer’s Rule implies xj = |Aj|/|B| = (|Aj||B|)/|B|2

where |Aj|, |B| ∈ OK and |B|2 =: d ∈ OK ∩Q = Z. (Check!) Hence
dxj ∈ OK ∩Q = Z. Hence xj ∈ 1

dZ. 2

Cor. Additively, OK is free of rank n.
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