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A case of Fermat’s Last Theorem
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x"* 4 y" = 7.
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime.
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime. Except, there ARE solutions when n = 2,
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime. Except, there ARE solutions when n = 2, so suffices to
prove no nontrivial integer solutions when n = 4 or n = odd prime.
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime. Except, there ARE solutions when n = 2, so suffices to
prove no nontrivial integer solutions when n = 4 or n = odd prime. Euler
showed that there are no nontrivial integer solutions when n = 3, 4.
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime. Except, there ARE solutions when n = 2, so suffices to
prove no nontrivial integer solutions when n = 4 or n = odd prime. Euler
showed that there are no nontrivial integer solutions when n = 3,4. Let’s
consider the equation x"” + y" = 7" when n = p > 3 is an odd prime.
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime. Except, there ARE solutions when n = 2, so suffices to
prove no nontrivial integer solutions when n = 4 or n = odd prime. Euler
showed that there are no nontrivial integer solutions when n = 3,4. Let’s
consider the equation x"” + y" = 7" when n = p > 3 is an odd prime. We may
assume that {x,y, z} are pairwise relative prime.
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A case of Fermat’s Last Theorem

If (x,y,z) is a nontrivial integer solution to x™" + y™" = z™, then (x",y", z")
is a nontrivial solution to x" 4+ y" = z". Thus, if one wants to show that there
are no nontrivial integer solutions to x* + y" = 7", it suffices to establish it
when 7 is prime. Except, there ARE solutions when n = 2, so suffices to
prove no nontrivial integer solutions when n = 4 or n = odd prime. Euler
showed that there are no nontrivial integer solutions when n = 3,4. Let’s
consider the equation x"” + y" = 7" when n = p > 3 is an odd prime. We may
assume that {x,y, z} are pairwise relative prime. We consider only “Case 1”:
p divides none of x, y, z.
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A case of Fermat’s Last Theorem, 11
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) - -+ (x —wP~!) forw =e»
implies that

P = = () = () en) (e ),
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) - -+ (x —wP~!) forw =e»
implies that

P = = () = () en) (e ),

This factorization takes place in A = Z[w].
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A case of Fermat’s Last Theorem, 11

2mi
The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that
P — () = (b ) () (@) (),
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

= — () = () wy)(xFwly) (kW)
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.

Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

&= — (0 = (b)) (W)
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.

Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.

Proof.
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

&= — (0 = (b)) (W)
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.

Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.

Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z,
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

2= () = (e )b ) (k) (x4 ).
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.

Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z, and (ii) 7
divides f; — f; = yw'(1 — /™).
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) - -+ (x —wP~!) forw =e»
implies that

2= () = (e )b ) (k) (x4 ).
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.

Proof. If 7 is prime d1v1d1ng x+w'y and x + w'y, then (i) ™ d1v1des z, and (i) 7
divides f; — f; = yw'(1 — /™). Since (& — 1) = (x — ) (@1 +--- + 1),
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

2= () = (e )b ) (k) (x4 ).
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.

Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z, and (ii) 7
divides f; — f; = yw'(1 — /™). Since (& — 1) = (x — )(@ "1 + -+ + 1), we
get (x —w) - (x—wP ) =4 +1),s0

(1—w)-(1—wl™ ) =p.
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

=2 = (=) = (A y)(x+wy) ) (W)
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.
Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z, and (ii) 7
divides f; — f; = yw'(1 — /™). Since (& — 1) = (x — )(@ "1 + -+ + 1), we
get (x —w) - (x—wP ) =4 +1),s0

(1—w)-(1—wl™ ) =p.

Hence yw'(1 — «/~%) divides yp.
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

=2 = (=) = (A y)(x+wy) ) (W)
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.
Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z, and (ii) 7
divides f; — f; = yw'(1 — /™). Since (& — 1) = (x — )(@ "1 + -+ + 1), we
get (x —w) - (x—wP ) =4 +1),s0

(1—w)-(1—wl™ ) =p.

Hence yw'(1 — «/~%) divides yp. Now 7 divides gcd(z, yp) = 1.
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

=2 = (=) = (A y)(x+wy) ) (W)
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.
Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z, and (ii) 7
divides f; — f; = yw'(1 — /™). Since (& — 1) = (x — )(@ "1 + -+ + 1), we
get (x —w) - (x—wP ) =4 +1),s0

(1—w)-(1—wl™ ) =p.

Hence yw'(1 — «/~%) divides yp. Now 7 divides gcd(z, yp) = 1. O
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A case of Fermat’s Last Theorem, 11

2mi

The fact that x” — 1 factors as (x — 1)(x —w) --- (x —wP ) forw =er
implies that

= () = () b)) (e ).
This factorization takes place in A = Z[w].
Assume that Z[w] is a UFD.
Claim. Distinct factors f; = x + w'y and f; = x + w/y are relatively prime.
Proof. If 7 is prime dividing x + w'y and x + «/y, then (i) 7 divides z, and (ii) 7
divides f; — f; = yw'(1 — /™). Since (& — 1) = (x — )(@ "1 + -+ + 1), we
get(x —w) - (x—w ) =@+ 4+1),s0

(1—w)-(1—wl™ ) =p.

Hence yw'(1 — «/~%) divides yp. Now 7 divides gcd(z, yp) = 1. O

This forces (x + wy) = ua? for some u, o € Z[w], u a unit.
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A case of Fermat’s Last Theorem, III
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p).
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p).
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p). Thus x” 4+ y? = ¥ reduces mod p to
X +x7 = (—x)? (mod p),
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p). Thus x” 4+ y? = ¥ reduces mod p to
X +xP = (—x)P (mod p), orp | 3x.
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p). Thus x” 4+ y? = ¥ reduces mod p to
X +xP = (—x)P (mod p), or p | 3x”. But p does not divide 3 or x”,
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p). Thus x” 4+ y? = ¥ reduces mod p to

X +xP = (—x)P (mod p), or p | 3x”. But p does not divide 3 or x”,
contradiction.
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p). Thus x” 4+ y? = ¥ reduces mod p to

X +xP = (—x)P (mod p), or p | 3x”. But p does not divide 3 or x”,
contradiction. O
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A case of Fermat’s Last Theorem, III

Kummer’s Lemma. If « is a unit in Z[w], then w /@ is a power of w.
Hence, if p > 5 and (x + wy) = ua” (mod p), then x =y (mod p).
(See Number fields, by Daniel Marcus.)

Thus x =y (mod p). The same argument applied to x” + (—z)? = (—y)?
implies that x = —z (mod p). Thus x” 4+ y? = ¥ reduces mod p to

X +xP = (—x)P (mod p), or p | 3x”. But p does not divide 3 or x”,
contradiction. O

Conclusion. There are no Case 1 solutions to x’ + y’ = 27 if p > 5 and Z[w)]
is a UFD.
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A case of Fermat’s Last Theorem, IV
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no
Case 1 solutions to x” + y’ = 7~.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no
Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from

= (x+y)(x+wy) - (x +wP™ly) that x + wy = ua?.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no
Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from

? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(") = (@) = (x+y)x+wy) - (r+wly)

that (x + wy) = IP.

Dedekind domains 5/10



A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no
Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from

? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(") = (@) = (x+y)x+wy) - (r+wly)

that (x + wy) = I”. Now suppose that p is a “regular prime”:
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(") = (@) = (x+y)x+wy) - (r+wly)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then / is principal.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(") = (@) = (x+y)x+wy) - (r+wly)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then
(x+wy) =17
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(") = (@) = (x+y)x+wy) - (r+wly)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then
(xtwy) =17 = (a)f = (o),
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(") = (@) = (x+y)x+wy) - (r+wly)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then
(x+wy) =1 = (a)’ = (a?), s0 (x +wy) = ua?.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(@) = (@ = (x+ ) +wy) - (e 7y)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then

(x+wy) =1" = (a) = (o), so (x + wy) = ua?. If p is a regular prime, then
we can follow the same argument and prove that there are no Case 1 solutions.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(@) = (@ = (x+ ) +wy) - (e 7y)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then

(x+wy) =1" = (a) = (o), so (x + wy) = ua?. If p is a regular prime, then
we can follow the same argument and prove that there are no Case 1 solutions.

p = 23 is regular, Z[wy3] is not a UFD, yet Z|w,3] has unique factorization of
ideals.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(@) = (@ = (x+ ) +wy) - (e 7y)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then

(x+wy) =1" = (a) = (o), so (x + wy) = ua?. If p is a regular prime, then
we can follow the same argument and prove that there are no Case 1 solutions.

p = 23 is regular, Z[wy3] is not a UFD, yet Z|w,3] has unique factorization of
ideals. So we understand FLT for more primes this way.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(@) = (@ = (x+ ) +wy) - (e 7y)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then

(x+wy) =1" = (a) = (o), so (x + wy) = ua?. If p is a regular prime, then
we can follow the same argument and prove that there are no Case 1 solutions.

p = 23 is regular, Z[wy3] is not a UFD, yet Z|w,3] has unique factorization of
ideals. So we understand FLT for more primes this way.

[Note: The above argument is based on Kummer’s “Main Argument”.
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A case of Fermat’s Last Theorem, IV

The previous argument explains why, if Z[w)] is a UFD, there can be no

Case 1 solutions to X’ + y? = z’. Unique factorization was use to deduce from
? = (x+y)(x +wy) - (x +wlly) that x + wy = uc’. Suppose we have
unique factorization of ideals rather than elements. We could deduce from

(@) = (@ = (x+ ) +wy) - (e 7y)

that (x + wy) = I”. Now suppose that p is a “regular prime”: If ] <1 Z[w)] and
I? is principal, then I is principal. In particular, if (x + wy) = I, then

(x+wy) =1" = (a) = (o), so (x + wy) = ua?. If p is a regular prime, then
we can follow the same argument and prove that there are no Case 1 solutions.

p = 23 is regular, Z[wy3] is not a UFD, yet Z|w,3] has unique factorization of
ideals. So we understand FLT for more primes this way.

[Note: The above argument is based on Kummer’s “Main Argument”. He also
proved that FLT holds for regular primes in Case 2, where p | z.]
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Dedekind domains

Definition 1.
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Dedekind domains

Definition 1. An integral domain D is a Dedekind domain if every nonzero
ideal factors uniquely into primes ideals.

Dedekind domains 6/10



Dedekind domains

Definition 1. An integral domain D is a Dedekind domain if every nonzero
ideal factors uniquely into primes ideals.

Fields are considered to be Dedekind domains.
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Definition 2. Let D be an integral domain that is not a field. D is a Dedekind
domain if

© D is Noetherian.

@ D is integrally closed.

© D has Krull dimension one.

Important examples:

@ The ring of integers Ok of an algebraic number field K (= finite
extension of the rationals).

@ the coordinate ring k[C] of a nonsingular curve.
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“Like a PID”
@ Unique factorization of ideals.

@ Every ideal / of a Dedekind domain D can be lé—generated: for all
nonzero a € I, there exists b such that I = (a, b).

© Finitely generated modules over a Dedekind domain are uniquely
expressible as

torsion free & torsion = ((&/_,D) ® 1) & (D/P{' & --- & D/P)
where the P; are nonzero primes.

“Robust generalization”
Q If D is a Dedekind domain, B a domain, D <jy B is a finite integral
extension, then B is a Dedekind domain.

©Q If D is a domain, then Dy, is a PID/DD for each maximal m iff D is a
Dedekind domain.
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Our main goals

@ Prove that Ok is a Dedekind domain. (Assuming [Q : K] < oo!)

@ Prove the equivalence of the two definitions. (That is, show that an
integral domain has unique factorization of ideals iff it is Noetherian,
integrally closed, and has Krull dimension 1.)

© (If time) Discuss the ideal class group.
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a := a,,[ satisfies X" + apay (X" 4 -+ a" layx + alay € Z[x]. Hence
any [ € K has the form «//k for some o € Ok, k € Z. Use the ’s to replace
the [3’s if necessary. O

Claim 2. There is an integer d such that Ox < 1 @" Z.
Proof. For v € O, write v = 3, xjB, x; € Q. Apply each o;:

oi(y) = 3=, %joi(5;). Cramer’s Rule implies x; = [A;|/|B| = (|A;||Bl)/|BJ?

where |A;|, |B| € Ok and |B|> =: d € Ox N Q = Z. (Check!) Hence
dxj € Ox NQ = Z. Hence x; € %Z. O

Cor. Additively, Ok is free of rank n.
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