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Properties preserved and reflected by localization

Property P A has P⇒ S−1A has P? ∧pAp has P⇒ A has P?
Integral domain yes no, (F2)

ω

PID/PIR yes no, (F2)
ω

Noetherian yes no, (F2)
ω

Artinian yes no, (F2)
ω

integrally closed yes yes, (Adomain = ∩mAm)
dim ≤ n yes yes, (Adomain = ∩mAm)

I + J = K yes yes
I ∩ J = K yes yes

IJ = K yes yes
I invertible yes yes, if I is f.g.
Dedekind yes yes

To see A = ∩mAm, the composition of monics A ↪→ ∩mAm
⊆→ Am becomes

epic after localization at m, hence A ↪→ ∩mAm is locally epic, hence epic.
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The local structure of a Dedekind domain

Thm. TFAE for a local domain D with maximal ideal m.

1 D is a Dedekind domain.
2 D is a PID.
3 D is a field or D is a discrete valuation ring. (DVR)

Proof. [(1)⇒ (2)] Any (semi)local Dedekind domain is a PID.
[(2)⇒ (1)] PIDs are Dedekind domains. 2

Ideal lattice of a DVR: (Dual of an (ω + 1)-chain.)

1

m = (a)

m2 = (a2)

m3 = (a3)

0
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DVRs

Let X = C, let A = C[x] be the ring of polynomial functions defined on X,
and let K = C(x) be the field of rational functions on X. At each point p ∈ X,
let vp(f ) count the order of the zero of f at the point p. That is, if f (x) = u(x)

w(x) ,
and u(x) = a

∏
(x− pi)

di and w(x) = b
∏
(x− pi)

ei , then vp(u/v) = d − e.
The function vp takes values in the discrete totally ordered group Z.

If the order of p as a zero of f (x) = u(x)
w(x) is vp(u/v) = n < 0, then we call p a

pole of order n of f (x).

The subring (C[x])(x−p) of C(x) of rational functions with no pole at p is
exactly the subring of those f (x) with vp(f ) ≥ 0. This is a local ring with
maximal ideal consisting of the rational functions with a zero of positive order
at p. The ideal lattice of this ring is a dual (ω + 1)-chain.
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Valuations

Df. A valuation ring on a field K is a subring V ≤ K such that, for every
x ∈ K, either x ∈ V or x−1 ∈ V .

Df. A valuation on a field K is a surjective function v : K× → 〈G; +,−, 0, <〉
(a totally ordered group) satisfying

1 v(fg) = v(f ) + v(g) (v is a homomorphism), and
2 v(f + g) ≥ min{v(f ), v(g)}.

(Sometimes we stipulate that v(0) = +∞.)

Df. The valuation ring associated to a valuation v is Kv = {a ∈ K | v(a) ≥ 0}.
This is a local domain with maximal ideal mv = {a ∈ K | v(a) > 0}.)

Df. For a field F, an F-valued place on K is a partial homomorphism
P : K → F whose domain is a valuation subring Kv of K and whose kernel is
the maximal ideal mv.
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First conclusions

1 The concepts “valuation”, “valuation ring”, “place” contain the same
information.

2 The valuation ring associated to a valuation on K is a valuation subring of K.

3 TFAE for subrings V of a field K:

1 The ideal lattice of V is a chain and K is the field of fractions of V .
2 For any x ∈ K, either x ∈ V or x−1 ∈ V .

(The equivalence of (1) and (2) is calghw1p2.)
3 There is valuation v on K and V = Kv.

(The value group is G = K×/V×;
the positive cone is (V − {0})/V×;
the valuation is v : K× → K×/V× : x 7→ x/V×.)

4 A valuation ring is discrete (has Z as its value group) iff it is Noetherian.

5 A discrete valuation ring is a local PID, hence a local Dedekind domain.
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Existence of valuation rings

Order the local subrings of K by dominance: If (D,mD) and (D′,m′D′) are
local subrings of K, then (D,mD) ≤ (D′,m′D′) if D ≤ D′ and m′D′ ∩ D = mD.

Thm. The above ordering is an inductive ordering. The maximal elements are
the valuation subrings of K.

Before proving this, we need a lemma:

Extension Lemma. If (D,mD) is a local subring of K, and x ∈ K, then
mD[x] 6= D[x] or mD[x−1] 6= D[x−1].

Proof. Otherwise we have

1 = d0 + d1x + · · ·+ dmxm ∈ m[x], 1 = e0 + e1x−1 + · · ·+ enx−n ∈ m[x−1]

for (say) m ≥ n minimal. Rewrite 2nd as (1− e0)xn = e1xn−1 + · · ·+ en, or
xn = (1− e0)

−1(e1xn−1 + · · ·+ en), so can reduce exponent m. 2
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Proof of Theorem

Proof of Theorem. (Of second sentence.) Assume that (D,mD) is maximal. If
not a valuation subring, then there exists x ∈ K with x, x−1 /∈ D. May assume
that mD[x] ≤ n ≺ D[x]. Necessarily mD ⊆ n|D 6= D, so mD = n|D, so
((D[x])n, nn) is a local ring dominating (D,mD). By maximality,
mD = nn 3 x, contradicting x /∈ D.

Assume that (D,mD) is a valuation ring that is properly dominated by
(L,mL). There must exist x ∈ L− D. Necessarily x−1 ∈ mD ⊆ mL. Now
x, x−1 ∈ L and x−1 ∈ mL, which is impossible. 2
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm.

The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof.

Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D.

We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D.

If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.

If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done.

If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V ,

so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w.

First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1]

(leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).

Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1].

Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K.

Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V .

2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,mV) be any valuation subring of K containing D. We argue that
V contains every element of D. If u ∈ D, then un + dn−1un−1 + · · ·+ d0 = 0.
If u ∈ V , then done. If u−1 ∈ V , then
u = −(dn−1 + dn−2u−1 · · ·+ d0(u−1)n−1) ∈ V , so still done.

Next we argue that if w /∈ D, then there is a valuation subring of K containing
D that does not contain w. First note that w /∈ D[w−1] (leads to integrality).
Choose a maximal ideal m satisfying w−1 ∈ n ≺ D[w−1]. Extend
(D[w−1]n, nn) to a valuation subring (V,mV) of K. Necessarily w /∈ V . 2

Cor. A Noetherian domain D is Dedekind iff Dm is a DVR for all maximal
m� D.

The local structure of a Dedekind domain 9 / 10



Another characterization of Dedekind domains

Thm. An integral domain is a Dedekind domain iff every ideal is
1 1

2 -generated.

Proof. “Only if” was proved on previous set of slides.

For “If”, it suffices to prove the theorem for local rings, say (A,m). Hence it
suffices to prove that a local domain where every ideal is 1 1

2 -generated is a
PID.

Choose a nonzero proper I � A. Since 0 6= Im ≤ I, and I is 1 1
2 -generated,

there exists b ∈ I such that I = Im+ (b). By NAK, I = (b). 2
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