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dim < n yes yes, (Adomain — A )
I+J=K yes yes
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I invertible yes yes, if [ is f.g.
Dedekind yes yes

.. . C
To see A = NmAmn, the composition of monics A — NpAyw — A becomes
epic after localization at m, hence A — NpuAy, is locally epic, hence epic.
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The function vy takes values in the discrete totally ordered group Z.

If the order of p as a zero of f(x) = v':((fc)) is vy(u/v) =n < 0, then we call p a
pole of order n of f(x).

The subring (C[x]) () of C(x) of rational functions with no pole at p is
exactly the subring of those f(x) with v, (f) > 0. This is a local ring with
maximal ideal consisting of the rational functions with a zero of positive order
at p. The ideal lattice of this ring is a dual (w + 1)-chain.
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© The valuation ring associated to a valuation on K is a valuation subring of K.
@ TFAE for subrings V of a field K:

@ The ideal lattice of V is a chain and K is the field of fractions of V.
@ Foranyx € K, eitherx € V orx~leV.

(The equivalence of (1) and (2) is calghw1p2.)
® There is valuation von K and V = K.

(The value group is G = K™ /V*;

the positive cone is (V — {0})/V*;

the valuation is v: K* — K* /V*: x +— x/V*))

© A valuation ring is discrete (has Z as its value group) iff it is Noetherian.

@ A discrete valuation ring is a local PID, hence a local Dedekind domain.
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Order the local subrings of K by dominance: If (D, mp) and (D', m}),) are
local subrings of K, then (D, mp) < (D', m},,) if D < D" and m),, N D = mp.

Thm.
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Thm. The above ordering is an inductive ordering. The maximal elements are
the valuation subrings of K.

Before proving this, we need a lemma:

Extension Lemma.
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Order the local subrings of K by dominance: If (D, mp) and (D', m},,) are
local subrings of K, then (D, mp) < (D', m},,) if D < D" and m),, N D = mp.

Thm. The above ordering is an inductive ordering. The maximal elements are
the valuation subrings of K.

Before proving this, we need a lemma:

Extension Lemma. If (D, mp) is a local subring of K, and x € K, then
mplx] # D[x] or mp[x~!] # D[x~!)].

Proof. Otherwise we have

l=dy+dix+---+dx"emfx], 1=ey+ex '+ - +ex"emx!]
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Order the local subrings of K by dominance: If (D, mp) and (D', m},,) are
local subrings of K, then (D, mp) < (D', m},,) if D < D" and m),, N D = mp.

Thm. The above ordering is an inductive ordering. The maximal elements are
the valuation subrings of K.

Before proving this, we need a lemma:
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mplx] # D[x] or mp[x~!] # D[x~!)].

Proof. Otherwise we have
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for (say) m > n minimal.
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local subrings of K, then (D, mp) < (D', m},,) if D < D" and m),, N D = mp.

Thm. The above ordering is an inductive ordering. The maximal elements are
the valuation subrings of K.

Before proving this, we need a lemma:

Extension Lemma. If (D, mp) is a local subring of K, and x € K, then
mplx] # D[x] or mp[x~!] # D[x~!)].

Proof. Otherwise we have
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for (say) m > n minimal. Rewrite 2nd as (1 — eg)x" = ex 4. 4, or
¥ = (1 —eg) ' (erx" ! + .- + e,), so can reduce exponent .

The local structure of a Dedekind domain



Existence of valuation rings

Order the local subrings of K by dominance: If (D, mp) and (D', m},,) are
local subrings of K, then (D, mp) < (D', m},,) if D < D" and m),, N D = mp.
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mplx] # D[x] or mp[x~!] # D[x~!)].

Proof. Otherwise we have
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for (say) m > n minimal. Rewrite 2nd as (1 — eg)x" = ex 4. 4, or
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Proof of Theorem. (Of second sentence.) Assume that (D, mp) is maximal. If
not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume

that mp[x] <n < Dlx].
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that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp).
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Proof of Theorem. (Of second sentence.) Assume that (D, mp) is maximal. If
not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume
that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,

mp =n,; > X,
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Proof of Theorem. (Of second sentence.) Assume that (D, mp) is maximal. If
not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume
that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,

mp = n, 3 x, contradicting x ¢ D.
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Proof of Theorem. (Of second sentence.) Assume that (D, mp) is maximal. If
not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume
that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,

mp = n, 3 x, contradicting x ¢ D.

Assume that (D, mp) is a valuation ring that is properly dominated by
(L, mL) .
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Proof of Theorem. (Of second sentence.) Assume that (D, mp) is maximal. If
not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume
that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,

mp = n, 3 x, contradicting x ¢ D.

Assume that (D, mp) is a valuation ring that is properly dominated by
(L, my). There must exist x € L — D.

The local structure of a Dedekind domain



Proof of Theorem

Proof of Theorem. (Of second sentence.) Assume that (D, mp) is maximal. If
not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume
that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,

mp = n, 3 x, contradicting x ¢ D.

Assume that (D, mp) is a valuation ring that is properly dominated by
(L, mz). There must exist x € L — D. Necessarily x~! € mp C my.
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not a valuation subring, then there exists x € K with x, x~! ¢ D. May assume
that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,

mp = n, 3 x, contradicting x ¢ D.

Assume that (D, mp) is a valuation ring that is properly dominated by
(L,my). There must exist x € L — D. Necessarily x~! € mp C m;. Now
x,x~!' € Land x~! € my, which is impossible.
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that mp[x] < n < D[x]. Necessarily mp C n|p # D, so mp = n|p, so
((D[x])n, ny) is a local ring dominating (D, mp). By maximality,
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The local structure of a Dedekind domain



Valuation rings and integral closure

The local structure of a Dedekind domain



Valuation rings and integral closure

Thm.

The local structure of a Dedekind domain



Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.
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Thm. The integral closure D of a subring D of a field K is the intersection of

the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D.
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Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D.
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Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done.
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy_1 +dpout - +do(u )" eV,
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If u € V, then done. If u~! € V, then
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Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w.
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Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w™!]
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Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w~!] (leads to integrality).
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w~!] (leads to integrality).
Choose a maximal ideal m satisfying w=! € n < D[w™!].
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w~!] (leads to integrality).
Choose a maximal ideal m satisfying w=! € n < D[w~!]. Extend

(D[w™!]4, 1) to a valuation subring (V, my) of K.

The local structure of a Dedekind domain



Valuation rings and integral closure
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Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w~!] (leads to integrality).
Choose a maximal ideal m satisfying w=! € n < D[w~!]. Extend

(D[w™!]4, 1) to a valuation subring (V, my) of K. Necessarily w ¢ V.
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w~!] (leads to integrality).
Choose a maximal ideal m satisfying w=! € n < D[w~!]. Extend

(Dw™!]4, ) to a valuation subring (V, my) of K. Necessarily w ¢ V. O
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Valuation rings and integral closure

Thm. The integral closure D of a subring D of a field K is the intersection of
the valuation rings containing D.

Proof. Let (V,my) be any valuation subring of K containing D. We argue that
V contains every element of D. If u € D, then u" + d,_u"~' + --- 4+ dy = 0.
If u € V, then done. If u~! € V, then

u=—(dy—1 +dpout-- +do(u')""1) € V, so still done.

Next we argue that if w ¢ D, then there is a valuation subring of K containing
D that does not contain w. First note that w ¢ D[w~!] (leads to integrality).
Choose a maximal ideal m satisfying w=! € n < D[w~!]. Extend

(Dw™!]4, ) to a valuation subring (V, my) of K. Necessarily w ¢ V. O

Cor. A Noetherian domain D is Dedekind iff Dy, is a DVR for all maximal
m<D.
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Another characterization of Dedekind domains

Thm. An integral domain is a Dedekind domain iff every ideal is
1 %— generated.
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For “If”, it suffices to prove the theorem for local rings, say (A, m).
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1 %— generated.
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For “If”, it suffices to prove the theorem for local rings, say (A, m). Hence it
suffices to prove that a local domain where every ideal is 1%—generated isa
PID.
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Another characterization of Dedekind domains

Thm. An integral domain is a Dedekind domain iff every ideal is
1 %— generated.

Proof. “Only if”” was proved on previous set of slides.

For “If”, it suffices to prove the theorem for local rings, say (A, m). Hence it
suffices to prove that a local domain where every ideal is 1%—generated isa
PID.

Choose a nonzero proper I < A.
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Another characterization of Dedekind domains

Thm. An integral domain is a Dedekind domain iff every ideal is
1 %— generated.

Proof. “Only if”” was proved on previous set of slides.

For “If”, it suffices to prove the theorem for local rings, say (A, m). Hence it
suffices to prove that a local domain where every ideal is 1%—generated isa
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