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dimension 1 has unique prime factorization of ideals, see Chapter 9 of AM.

Main ideas.
Q IfI < D, where D is a Noetherian domain, then / has a primary
decomposition I = Q1 N - - -N Q, where the p; = /Q; are distinct primes.
@ If D has Krull dimension 1, then the p; are comaximal, so the Q; are, so
QiN--NQ =00
@ If D is also integrally closed, then primary = prime power, so Q; = p;’,
sol =pi---pe.
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@ Suffices to prove that every nonzero integral ideal is invertible.
((3d)(dM <1 D), dM invertible and (d) is invertible = M invertible.)
© Suffices to prove that every nonzero prime ideal is invertible.
(I = p7" - p¢ in group of invertibles.)
© Suffices to prove that every invertible prime is maximal.
(Choose any prime P. If (0) # (a) C P, and (a) = Py - - - P,, then each
P; is invertible. By maximality of invertible primes, P = P; for some i,
so P is invertible.)
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Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.
Assume the P is invertible, but not maximal.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.
Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.
Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 -+ Qy
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Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P.
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Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and
(@)? = (@)=Ri R,
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and
(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{R],...,RV} = {@17@]7"'?@147@14}'
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence

{Ri,...,R} ={0Q1,01,...,0u Ou}-
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence

{Ri,...,R} ={01,01,...,Qu, Qu}. Hence (¢®) + P = ((a) + P)*.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P> C (a) + P2
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P2,
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P?. Sinceax =p —q € P,
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P2. Sinceax =p —q € P,and a ¢ P, must have x € P.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P2. Since ax =p —q € P,and a ¢ P, must have x € P. Hence

P C (a)P + P? C P, forcing P = (a)P + P?
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P2. Since ax =p —q € P,and a ¢ P, must have x € P. Hence

P C (a)P + P? C P, forcing P = (a)P + P?> Multiply by P~! to obtain

D = (a) + P,
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P2. Since ax =p —q € P,and a ¢ P, must have x € P. Hence

P C (a)P + P? C P, forcing P = (a)P + P?> Multiply by P~! to obtain

D = (a) + P, contrary to assumption.
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.

Assume the P is invertible, but not maximal. There must exists a ¢ P such
that (a) + P # D. Let (a) + P = Q1 ---Q, and (¢®>) + P = R, - - - R, be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q, - -- Q, and

(@)? = (@) = R; ---R,, so (since (a@°) is invertible)

{Ri,...,R,} ={0,,0,...,0,,0,}. Hence
{Ry,...,R}={01,01,...,0u4, Q). Hence (a*) + P = ((a) + P)?. Hence
P C (a®) + (a)P + P?> C (a) + P?. Hence if p € P, then p = ax + g with

g € P2. Since ax =p —q € P,and a ¢ P, must have x € P. Hence

P C (a)P + P? C P, forcing P = (a)P + P?> Multiply by P~! to obtain

D = (a) + P, contrary to assumption. O

Characterizations of Dedekind domains



PID = UFD+DD

Characterizations of Dedekind domains



PID = UFD+DD

Cor.

Characterizations of Dedekind domains



PID = UFD+DD

Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Characterizations of Dedekind domains



PID = UFD+DD

Cor. A ring is a PID iff it Dedekind domain that is a UFD.
Proof.

Characterizations of Dedekind domains



PID = UFD+DD

Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

Characterizations of Dedekind domains




PID = UFD+DD

Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD.
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Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD. Let p # (0) be prime.
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PID = UFD+DD

Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD. Let p # (0) be prime. Choose
a € p — (0) and factor into irreducible (prime) elements

— €l €,
a_p] ...pn”‘

Each ideal (p;) is prime,
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Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD. Let p # (0) be prime. Choose
a € p — (0) and factor into irreducible (prime) elements

— €l €,
a_p] ...pn”‘

Each ideal (p;) is prime, and one of them must be p. This shows that prime
ideals of D are principal.
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Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD. Let p # (0) be prime. Choose
a € p — (0) and factor into irreducible (prime) elements
a:pil pfl"

Each ideal (p;) is prime, and one of them must be p. This shows that prime
ideals of D are principal. Since every ideal is a product of primes, every ideal
is principal.
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Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD. Let p # (0) be prime. Choose
a € p — (0) and factor into irreducible (prime) elements
a:pil pfl"

Each ideal (p;) is prime, and one of them must be p. This shows that prime
ideals of D are principal. Since every ideal is a product of primes, every ideal
is principal. O
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