
Characterizations of Dedekind domains

Characterizations of Dedekind domains 1 / 11



Atiyah-MacDonald

For a short proof that an integrally closed, Noetherian domain of Krull
dimension 1 has unique prime factorization of ideals, see Chapter 9 of AM.

Main ideas.

1 If I � D, where D is a Noetherian domain, then I has a primary
decomposition I = Q1 ∩ · · · ∩Qr where the pi =

√
Qi are distinct primes.

2 If D has Krull dimension 1, then the pi are comaximal, so the Qi are, so
Q1 ∩ · · · ∩ Qr = Q1 · · ·Qr.

3 If D is also integrally closed, then primary = prime power, so Qi = pei
i ,

so I = pei
1 · · · per

r .
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Fractional and invertible ideals

Dfs.
• Let D be an integral domain and let K = field of fractions. A fractional ideal of D is
a nonzero D-submodule M ≤ K for which there exists d ∈ D such that dM ⊆ D.
• If M is a fractional ideal of D, let M−1 = (D : M)K = {k ∈ K | kM ⊆ D}.
(MM−1 ⊆ D always holds.) I is invertible if II−1 = I−1I = D.
Remarks.

1 If D is Noetherian, then a fractional ideal is just a f.g. D-submodule of K.
2 A fractional ideal contained in D is an ordinary ideal. (An integral ideal.)
3 The product of fractional ideals is fractional.
4 The inverse of a fractional ideal of a Noetherian domain is fractional.
5 Principal fractional ideals are invertible.
6 If M,N are fractional, and MN = D, then M,N are invertible.

Examples.

1 1
2Z is an invertible ideal of Z. Its inverse is 2Z.

2 I = (x, y) is a fractional ideal of D = k[x, y] that is not invertible. I−1 = D and
II−1 = ID = I 6= D.
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Examples.
1 1

2Z is an invertible ideal of Z.

Its inverse is 2Z.

2 I = (x, y) is a fractional ideal of D = k[x, y] that is not invertible. I−1 = D and
II−1 = ID = I 6= D.
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Three definitions

Definition 1. An integral domain D is a Dedekind domain if every nonzero
ideal factors uniquely into primes ideals.

Definition 2. An integral domain D is a Dedekind domain (DD) if it is a field
or

1 D is Noetherian.
2 D is integrally closed.
3 D has Krull dimension one.

Definition 3. An integral domain D is a Dedekind domain ( DD) if every
fractional ideal is invertible.
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Preliminaries

Df. If M and N are fractional ideals, call M a divisor of N if N = IM for some
integral ideal I.

Lm. If M is an invertible ideal of a domain D, then M is a divisor of N iff M ⊇ N.

Proof. If M is a divisor of N, then N = IM for some integral I ⊆ D. Then
N = IM ⊆ DM = M.

Conversely, assume that N ⊆ M. Let I = NM−1 ⊆ MM−1 = D. Then I is integral
and IM = NM−1M = ND = N, so M is a divisor of N. 2

Thm. If I is an integral invertible ideal of a domain D, then I has at most one
factorization into prime ideals of D (up to permutation of factors).

Proof. Choose a shortest counterexample I = P1 · · ·Pr = Q1 · · ·Qs.
D = II−1 = P1(P2 · · ·PrI−1), so Pi (and Qj) are invertible.
P1 ⊇ Q1 · · ·Qs, so by primeness we may assume that P1 ⊇ Q1. Hence Q1 = P1R1.
Hence R1 ⊇ Q1 and either Q1 = P1 or Q1 = R1. If Q1 = R1, then Q1 = P1Q1, so
D = P1, contradiction. Hence Q1 = P1, and we can multiply P1 · · ·Pr = Q1 · · ·Qs by
P−1

1 to make it shorter. 2
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DD implies DD

Thm. A DD is Noetherian.

Proof. Choose integral I � D. II−1 = D, so 1 =
∑n

i=1 bici for
bi ∈ I, ci ∈ I−1, bici ∈ D. Given a ∈ I, a =

∑n
i=1 abici with aci ∈ D. Thus,

I ⊆ (b1, . . . , bn) ⊆ I. 2

Thm. A DD is integrally closed.

Proof. If u is integral over D, then M := D[u] is a fractional ideal satisfying
M2 = M (since M is a subring of K). Necessarily M belongs to the group of
invertible ideals, so D = MM−1 = M2M−1 = MD = M, forcing u ∈ D. 2

Thm. A DD has Krull dimension 1.

Proof. We must show that nonzero primes are maximal. If instead
D ) M ) P, then MI = P for some integral I. By primality of P and
invertibility of I, P = I. Hence MP = P. Hence M = MPP−1 = PP−1 = D,
contradiction. 2
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Preliminaries for the reverse direction

Lm. Any nonzero ideal of a Noetherian domain D contains a product of
nonzero prime ideals.

Proof. Else D contains an ideal I maximal for the property that it does not
contain a product of nonzero primes. (Now follow your nose.) 2

Lm. If D is Noetherian, M is a fractional ideal, and some s ∈ K satisfies
sM ⊆ M, then s is integral over D. 2

Lm. If D is a Noetherian domain of Krull dimension 1 and (0) ( I ( D, then
I−1 ) D.
(In particular, the inverse of a nonzero proper integral ideal is not integral.)

Proof. Choose 0 6= (a) ⊆ I ⊆ P ( D. Can find (0) 6= Q1 · · ·Qr ⊆ (a) with r
minimal. May assume P = Q1. If r = 1, then 1/a ∈ I−1 − D.
If r > 1, choose b ∈ Q2 · · ·Qr − (a). (b ∈ (a)⇔ (∃d)(b = ad)⇔ b/a ∈ D.)
(b/a)I ⊆ (b/a)P ⊆ (1/a)Q1 · · ·Qr ⊆ (1/a)(a) = D, so b/a ∈ I−1 − D. 2
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DD implies DD

Thm. If an integral domain D is

1 Noetherian,
2 integrally closed, and
3 has Krull dimension 1,

then every fractional ideal is invertible.

Proof. Let M be a fractional ideal of D. MM−1 is integral, as is
(MM−1)(MM−1)−1, so M−1(MM−1)−1 ⊆ M−1. Elements s ∈ (MM−1)−1

are integral over D, so (MM−1)−1 ⊆ D. But the inverse of a proper integral
ideal cannot be integral, so MM−1 = D. 2
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DD implies prime factorization

Thm. If D is a DD, then any nonzero ideal can be factored uniquely into
nonzero prime ideals.

Proof. Choose I 6= (0) maximal for failing this. I is not prime. Can find
proper integral A,B ) I with AB ⊆ I. A is integral, invertible, so must exist
C ⊇ I with AC = I. If I 6= C, then done, since both A and C are products of
primes. Else AI = I, in which case A = AII−1 = II−1 = D, a contradiction. 2
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Prime factorization implies DD

Thm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every fractional ideal is invertible.

Some reductions. (Assume unique prime factorization of ideals.)

1 Suffices to prove that every nonzero integral ideal is invertible.
((∃d)(dM � D), dM invertible and (d) is invertible⇒ M invertible.)

2 Suffices to prove that every nonzero prime ideal is invertible.
(I = pe1

1 · · · per
r in group of invertibles.)

3 Suffices to prove that every invertible prime is maximal.
(Choose any prime P. If (0) 6= (a) ⊆ P, and (a) = P1 · · ·Pr, then each
Pi is invertible. By maximality of invertible primes, P = Pi for some i,
so P is invertible.)
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Prime factorization implies invertible primes are maximal

Lm. If D is a domain in which every nonzero integral ideal factors uniquely
into prime ideals, then every invertible prime is maximal.

Proof.
Assume the P is invertible, but not maximal. There must exists a /∈ P such
that (a) + P 6= D. Let (a) + P = Q1 · · ·Qu and (a2) + P = R1 · · ·Rv be prime
factorizations.

Factor modulo P. D/P is a domain in which every nonzero integral ideal
factors uniquely into primes. We have (a) = Q1 · · ·Qu and
(a)2 = (a2) = R1 · · ·Rv, so (since (a2) is invertible)
{R1, . . . ,Rv} = {Q1,Q1, . . . ,Qu,Qu}. Hence
{R1, . . . ,Rv} = {Q1,Q1, . . . ,Qu,Qu}. Hence (a2) + P = ((a) + P)2. Hence
P ⊆ (a2) + (a)P + P2 ⊆ (a) + P2. Hence if p ∈ P, then p = ax + q with
q ∈ P2. Since ax = p− q ∈ P, and a /∈ P, must have x ∈ P. Hence
P ⊆ (a)P + P2 ⊆ P, forcing P = (a)P + P2 Multiply by P−1 to obtain
D = (a) + P, contrary to assumption. 2
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PID = UFD+DD

Cor. A ring is a PID iff it Dedekind domain that is a UFD.

Proof.
It is easy to see that a PID is a UFD+DD.

For the converse, assume D is a DD+UFD. Let p 6= (0) be prime. Choose
a ∈ p− (0) and factor into irreducible (prime) elements

a = pe1
1 · · · p

en
n .

Each ideal (pi) is prime, and one of them must be p. This shows that prime
ideals of D are principal. Since every ideal is a product of primes, every ideal
is principal. 2
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