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This proves that if D is a Dedekind domain, then [M] = [N] is equivalent to
pM = pN.
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Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.
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[(2)=(3)]

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.
[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.
[(2)=-(3)] Projectives are retracts of free.

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.

[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.
[(2)=-(3)] Projectives are retracts of free.

[(3)=(4)]

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.

[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.

[(2)=-(3)] Projectives are retracts of free.

[(3)=(4)] Assume M = (my, ..., m,) where the first s generators are linearly
independent and all others depend on them.

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.

[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.

[(2)=-(3)] Projectives are retracts of free.

[(3)=(4)] Assume M = (my, ..., m,) where the first s generators are linearly
independent and all others depend on them. (1 < s < r.)

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.

[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.

[(2)=-(3)] Projectives are retracts of free.

[(3)=(4)] Assume M = (my, ..., m,) where the first s generators are linearly
independent and all others depend on them. (1 < s < r.) F = (my,...,my) is
free, and M — F': x — dx is an embedding for some d.

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.
[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.
[(2)=-(3)] Projectives are retracts of free.

[(3)=(4)] Assume M = (my, ..., m,) where the first s generators are linearly
independent and all others depend on them. (1 < s < r.) F = (my,...,my) is
free, and M — F': x — dx is an embedding for some d.

[(DH=(1)]

The ideal class group



The structure of f.g. projective modules over a DD

Thm. Let M be a module over a Dedekind domain D. TFAE:
@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.
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@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.

[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.

[(2)=-(3)] Projectives are retracts of free.

[(3)=(4)] Assume M = (my, ..., m,) where the first s generators are linearly
independent and all others depend on them. (1 < s < r.) F = (my,...,my) is
free, and M — F': x — dx is an embedding for some d.

[(4)=(1)] (Induction on rank.) Assume that M < @"D. Restrict

0— @ 'D— @D ™ D — 0toM in the middle:

The ideal class group



The structure of f.g. projective modules over a DD
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@ M is isomorphic to a finite direct sum of integral ideals of D.
Q M isf.g. and projective.
@ M is f.g. and torsion free.
© M is embeddable in a f.g. free module.

Proof.

[(1)=-(2)] Integral ideals are f.g. and projective. & preserves this.
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[(3)=(4)] Assume M = (my, ..., m,) where the first s generators are linearly
independent and all others depend on them. (1 < s < r.) F = (my,...,my) is
free, and M — F': x — dx is an embedding for some d.

[(4)=(1)] (Induction on rank.) Assume that M < @"D. Restrict
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Striking Lemma. If D is a Dedekind domain and /,J <1 D are nonzero integral
ideals, then there is an ideal I’ such that [I'] = [I]~! and I’ +J = D.
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Df. Let D be a domain with field of fractions K. If M is a D-module, then the
rank of M is the K-dimension of K ®p M.

If I < D is a nonzero integral ideal, then since localization is an exact functor
K®pl (=2 (D) 'D®pl=(D*)~'I)is embeddable in K ®p D (= K).
Hence the rank of I is at most 1. But the rank of / cannot be zero, since if

a €1—{0},thena/l £ 0/1in (D*)~'I, since D is an integral domain.
Therefore integral (and fractional) ideals have rank 1. Therefore, the rank of a
typical f.g. projective P = I} @ - - - & I, is the number of summands.
Therefore the rank 1 projectives are exactly the integral ideals.

Thm. The ideal class group of a Dedekind domain D classifies the f.g.
projective D-modules of rank 1. Multiplication of rank 1 projectives is given
by tensor product. The identity element [D] represents the isomorphism type
of free modules of rank 1.

In this way, the ideal class group classifies all finitely generated projective
D-modules.
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sol'’=D,sol € [I'"! =[D], sois principal. O

Striking Corollary 2. If D is a Dedekind domain, then any nonzero ideal
I<aDis 1 %-generated. Moreover, any proper quotient of a Dedekind domain
is a principal ideal ring.

Proof. Choose any a € I — {0}. Since (a) C I, there exists J such that
(a) = IJ. Choose I € [I]~! comaximal with J. We must have II' = (b) for
some b € I. We argue that I = (a,b):
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I<aDis 1 %-generated. Moreover, any proper quotient of a Dedekind domain
is a principal ideal ring.
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(a) = IJ. Choose I € [I]~! comaximal with J. We must have II' = (b) for
some b € I. We argue that I = (a,b):
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Proof. Let J be the (finite) product of all nonzero primes. If / is a nonzero
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Striking Corollary 2. If D is a Dedekind domain, then any nonzero ideal
I<aDis 1 %-generated. Moreover, any proper quotient of a Dedekind domain
is a principal ideal ring.

Proof. Choose any a € I — {0}. Since (a) C I, there exists J such that
(a) = IJ. Choose I € [I]~! comaximal with J. We must have II' = (b) for
some b € I. We argue that I = (a,b):

(a,b) = (a) + (b)

The ideal class group



Striking Corollaries of the Striking Lemma

Striking Corollary 1. Any semilocal Dedekind domain is a PID.

Proof. Let J be the (finite) product of all nonzero primes. If / is a nonzero
ideal, find I’ € [I]=! with I’ comaximal with J. I’ can have no prime factors,
sol'’=D,sol € [I'"! =[D], sois principal. O

Striking Corollary 2. If D is a Dedekind domain, then any nonzero ideal
I<aDis 1 %-generated. Moreover, any proper quotient of a Dedekind domain
is a principal ideal ring.

Proof. Choose any a € I — {0}. Since (a) C I, there exists J such that
(a) = IJ. Choose I € [I]~! comaximal with J. We must have II' = (b) for
some b € I. We argue that I = (a,b):

(a,b) = (a) + (b) = ged((a), (b))
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(a,b) = (a) + (b) = ged((a), (b)) = ged(1J, 1) =1 - ged(J, 1) = I.

For the last claim, If H # 0, then any ideal of D/H has the form (a, b)/H for
some a € H— {0},
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