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Language + laws

R = 〈R; ·,+,−, 0, 1〉 (= R)

1 〈R; +,−, 0〉 is an abelian group.
1 (∀x)(∀y)(∀z)(x + (y + z) = (x + y) + z)
2 (∀x)(x + 0 = x = 0 + x)
3 (∀x)(x + (−x) = 0 = (−x) + x)

2 〈R; ·, 1〉 is a commutative monoid.
1 (∀x)(∀y)(∀z)(x · (y · z) = (x · y) · z)
2 (∀x)(∀y)(x · y = y · x)
3 (∀x)(x · 1 = x = 1 · x)

3 distributive laws hold.
1 (∀x)(∀y)(∀z)(x · (y + z) = (x · y) + (x · z))
2 (∀x)(∀y)(∀z)((x + y) · z = (x · z) + (y · z))

(Choose language so that the formulas, substructures, and morphisms are
what you want them to be.)

Commutative Rings 2 / 13



Comparisons of sets/structures
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6ν=natural ι=inclusion

A = dom(f ) B = cod(f )

coim(f )
im(f )

f (a) = f (h) = b′′

f (z) = b′

f (q) = b

f

f̄ =induced

f̄ ([z]) = f (z)

f̄ ([q]) = f (q)
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Comparisons of sets/structures

1 The image of f is im(f ) = f [A] = {b ∈ B : ∃a ∈ A(f (a) = b)}. The
image of a subset U ⊆ A is f [U] = {b ∈ B : ∃u ∈ U(f (u) = b)}.

2 The preimage or inverse image of a subset V ⊆ B is
f−1[V] = {a ∈ A : f (a) ∈ V}.

3 The preimage of a singleton {b} is written f−1(b) and sometimes called
the fiber of f over b. The fiber containing the element a is sometimes
written [a].

4 The coimage of f is the set coim(f ) = {f−1(b) : b ∈ im(f )} of all
nonempty fibers.

5 The kernel of f is ker(f ) = {(a, a′) ∈ A2 : f (a) = f (a′)}.
6 The natural map is ν : A→ coim(f ) : a 7→ [a].
7 The inclusion map is ι : im(f )→ B : b 7→ b.
8 The induced map is f̄ : coim(f )→ im(f ) : [a] 7→ f (a).
9 The canonical factorization of f is f = ι ◦ f̄ ◦ ν.
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coimage, kernel, Kernel

The amount of “collapsing” associated with a homomorphism is coded in the
coimage (a partition) or the kernel (the associated equivalence relation). If our
algebra has underlying group structure, the information is coded in the
cell/equivalence class containing the group identity element 0:

Ker(f ) = {a ∈ dom(f ) | f (a) (= f (0)) = 0}

For rings these sets are called ideals.

Computational check: (A theorem)
A subseteq I ⊆ R is an ideal exactly when

1 I is closed under +, and
2 rI, Ir ⊆ R for all r ∈ R.
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The ideal lattice

The set of all ideals of R, ordered by inclusion, form a (complete) lattice:∧
Ik =

⋂
Ik∨

Ik =
∑

Ik = 〈
⋃

Ik〉abelian group

This lattice is equipped with a product:
IJ = 〈{ij|i ∈ I, j ∈ J}〉ideal = 〈{ij|i ∈ I, j ∈ J}〉abelian group

R

0

I J

I + J

I ∩ J

IJ
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Z

For I � Z, I = (n) for some (nonnegative) n.

For (m) ⊆ (n) iff n|m.

For (m) + (n) = (gcd(m, n))

For (m) ∩ (n) = (lcm(m, n))

For (m)(n) = (mn)
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The ideal lattice is modular

Dedekind observed that the ideal lattice of a ring satisfies the following
equivalent conditions:

1 I ∩ (J + L) = (I ∩ J) + (I ∩ L) whenever J ⊆ I.
2 I ∩ ((I ∩ J) + L) = (I ∩ J) + (I ∩ L).
3 No sublattice isomorphic to a pentagon.

(Context.)

(Proof.)

(Isomorphism of perspective intervals.)

(A product of two Noetherian rings is Noetherian.)
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The ideal product vs group commutator

If you are familiar with groups, then you might compare:
1 ring R↔ group G
2 ideal I ↔ normal subgroup M
3 ideal product IJ↔ commutator of normal subgroups [M,N]

4 annihilation (IJ = 0)↔ centrality ([M,N] = 1)
5 commutator words for rings: xy, yx↔ commutator word for groups

[x, y] = x−1y−1xy
For example

1 I ≤ I′, J ≤ J′ implies IJ ≤ I′J′ (M ≤ M′, N ≤ N′ implies
[M,N] ≤ [M′,N′])

2 IJ ⊆ I ∩ J ([M,N] ⊆ M ∩ N)
3 I(

∑
Jk) =

∑
(IJk) ([M,

∨
Nk] =

∨
[M,Nk])

4 I2 = 0 means that the induced structure on I is that of an R-module
([M,M] = 0 means that the induced structure on M is that of an
G-module)
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The ideal product is residuated

If you thought to divide ideals, you would want division to satisfy

IJ ⊆ K ⇐⇒ I ⊆ K/J.

There is such a division, but it is written (K : J) instead of K/J, it is called the
ideal quotient of K by J, and it is defined (K : J) := {r ∈ R | rJ ⊆ K}.
Some properties:

1 (K : J) = R iff J ⊆ K.
2 K ⊆ (K : J).
3 (K : J)J ⊆ K.
4 (

⋂
Ki : J) =

⋂
(Ki : J).

5 (K :
∑

Ji) =
⋂

(K : Ji). (In particular, (K : J) = (K : J + K).)
6 (K : IJ) = ((K : I) : J).
7 In Z, If (m) ⊆ (n), then ((m) : (n)) = (m/n).
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Ideals the square to zero, solvability = nilpotence

If I � R satisfies I2 = 0, then the structure induced on I by R is that of an
R-module.

That is, if p(x1, . . . , xn) ∈ Pol(R) has the property that p(I, . . . , I) ⊆ I, then
p|I agrees with a module polynomial

∑
rixi + c, c ∈ I. The structure of such

ideals can be understood using ‘linear algebra’.

If I ⊆ J and J2 ⊆ I, then the structure J/I can be understood using linear
algebra. More generally, given a ‘solvability chain’ I0 ⊆ · · · ⊆ In with
I2
k+1 ⊆ Ik for all k, we can theoretically understand In/I0 using linear algebra.

For associative rings, solvability = nilpotence. (IJ)(KL) = (I(J(KL))), so
2-step solvability (II)(II) = 0 implies at most 3-step nilpotence (I(I(II))).
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Nilradical

Defn. The nilradical of R, possibly written nil(R) or N, is the set of nilpotent
elements of R: nil(R) := {r ∈ R | ∃n(rn = 0)}.
The nilradical of an ideal I � R is the set of elements ‘nilpotent over I’, or

‘nilpotent modulo I’:
√

I := {r ∈ R | ∃n(rn ∈ I)}.

So, nil(R) =
√

(0).

Everyone knows:
1
√

I is an ideal.
2 The mapping X 7→

√
〈X〉 is a closure operator. In particular, this

mapping is
1 (Extensive) I ⊆

√
I.

2 (Monotone) I ⊆ J implies
√

I ⊆
√

J.
3 (Idempotent)

√√
I =
√

I.
3
√

I is the intersection of the prime ideals containing I.
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In R = Z

In number theory, the radical of a positive integer n = pe1
1 · · · p

ek
k is the

square-free number whose factorization contains the same primes:
rad(n) = p1 · · · pk.

Exercise. Explain why
√

(n) = (rad(n)).
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