Commutative Rings

Euclidean Domains

Commutative Rings



Language + laws

R = <R;'a+7_>0a 1> (: R)

@ (R;+, —,0) is an abelian group.

0 (W)(Wy)(Vo)x+ (y+2) = (x+y) +2)

(5] (Vx)(x—i—O—x-O—i—x)

0 (VY)(x+ (—x) =0=(-x) +x)
is
)
)(

Q <R, -, 1) is a commutative monoid.
0 (V)W) (V2)(x-(y-2) = (x-y)-2)
0 (Vx)(vy)(x-y=y-x)

0 (Mx)(x-1=x=1-x)
@ distributive laws hold.

0 (Vx)(Wy)(V2)(x- (v +2)
@ (Vx)(Vy)(Vz)((x +y) -z

= (x-y)+ (x-2))

=(x-2)+(-2)

(Choose language so that the formulas, substructures, and morphisms are
what you want them to be.)
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Comparisons of sets/structures

A = dom(f) / e | B = cod(f)
a h % | @) = F(h) = b
z } flz) ="
q Y| fla) =0
l v=natural T t=inclusion
coim(f) f=induced

S
|
V




Comparisons of sets/structures

@ The image of f isim(f) = f[A] ={b € B : Ja € A(f(a) = b)}. The
image of asubset U CAisf[U] ={beB : Juec U(f(u) =b)}.

© The preimage or inverse image of a subset V C B is
flvVi={a€A : f(a) € V}.

@ The preimage of a singleton {b} is written f ~! (b) and sometimes called
the fiber of f over b. The fiber containing the element a is sometimes
written [a].

@ The coimage of f is the set coim(f) = {f~1(b) : b € im(f)} of all
nonempty fibers.

@ The kernel of f is ker(f) = {(a,d’) € A> : f(a) =f(d')}.

@ The natural map is v: A — coim(f): a — [a].

@ The inclusion map is v: im(f) — B: b — b.

@ The induced map is f: coim(f) — im(f): [a] — f(a).

@ The canonical factorization of f isf = tof ov.
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coimage, kernel, Kernel

The amount of “collapsing” associated with a homomorphism is coded in the
coimage (a partition) or the kernel (the associated equivalence relation). If our
algebra has underlying group structure, the information is coded in the
cell/equivalence class containing the group identity element O:

Ker(f) = {a € dom(f) | f(a) (= f(0)) =0}
For rings these sets are called ideals.

Computational check: (A theorem)
A subseteq I C R is an ideal exactly when

@ /s closed under +, and
Q rl,Ir CRforall r € R.
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The ideal lattice

The set of all ideals of R, ordered by inclusion, form a (complete) lattice:
Nl =Nk
ka = Zlk = <U Ik>abelian group

This lattice is equipped with a product:
1J = <{l]’l S I,j € J}>ideal = <{U|l € I7j S J}>abelian group
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For I < Z, I = (n) for some (nonnegative) n.
For (m) C (n) iff n|m.
For (m) + (n) = (ged(m, n))

For (m) N (n) = (lem(m, n))
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The ideal lattice 1s modular

Dedekind observed that the ideal lattice of a ring satisfies the following
equivalent conditions:

Q@ IN(J+L)=(INJ)+ (I NL)wheneverJ C I.
QINn((INn)+L)y=UNnJ)+(INL)

© No sublattice isomorphic to a pentagon.

(Context.)
(Proof.)
(Isomorphism of perspective intervals.)

(A product of two Noetherian rings is Noetherian.)
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The 1deal product vs group commutator

If you are familiar with groups, then you might compare:
Q ring R <> group G
@ ideal I +» normal subgroup M
@ ideal product IJ <+ commutator of normal subgroups [M, N]
© annihilation (IJ = 0) <> centrality ([M,N] = 1)
© commutator words for rings: xy, yx <> commutator word for groups
e,y =2y "y
For example
Q@ /<I,J<J implieslJ <I'J/ (M <M', N <N implies
[M,N] < [M',N))
Q@ UCINJ(M,NCMNN)
Q 1(>_Jk) = (k) (M, \/ N| = VM, Ni])
@ I? = 0 means that the induced structure on I is that of an R-module

([M, M] = 0 means that the induced structure on M is that of an
G-module)
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The ideal product is residuated

If you thought to divide ideals, you would want division to satisfy

IJCK<=I1CK/J.

There is such a division, but it is written (K : J) instead of K/J, it is called the
ideal quotient of K by J, and it is defined (K : J) :== {r € R | rJ C K}.
Some properties:

O (K:J)=RiffJ CK.

@ KC(K:J).

@ (K:J)JCK.

Q NKi:J)=N(K;:J).

@ (K:> Ji)=N(K:J). (Inparticular, (K : J) = (K : J + K).)
QO (K:I))=((K:1):J).

@ InZ,If (m) C (n), then ((m) : (n)) = (m/n).
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Ideals the square to zero, solvability = nilpotence

If I <1 R satisfies I> = 0, then the structure induced on 7 by R is that of an
R-module.

That is, if p(x1,...,x,) € Pol(R) has the property that p(,...,I) C I, then
p|r agrees with a module polynomial > rx; + ¢, ¢ € I. The structure of such
ideals can be understood using ‘linear algebra’.

If I C J and J? C I, then the structure J /I can be understood using linear
algebra. More generally, given a ‘solvability chain’ Iy C - - - C [,, with
I,% 1 € Ii for all k, we can theoretically understand 7, /I using linear algebra.
For associative rings, solvability = nilpotence. (IJ)(KL) = (I(J(KL))), so
2-step solvability (1I)(1I) = 0 implies at most 3-step nilpotence (/((1I))).
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Nilradical

Defn. The nilradical of R, possibly written nil(R) or 91, is the set of nilpotent
elements of R: nil(R) := {r € R | In(r" = 0)}.

The nilradical of an ideal I <1 R is the set of elements ‘nilpotent over I’, or
‘nilpotent modulo /’:

VI:={reR|3n(" c}.
So, nil(R) = 1/(0).

Everyone knows:

@ /I is an ideal.
©Q The mapping X — \/@ is a closure operator. In particular, this
mapping is
O (Extensive) I C /1.
@ (Monotone) I C J implies v/ C v/J.
© (Idempotent) \/\7 =TI

@ /I is the intersection of the prime ideals containing /.
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In number theory, the radical of a positive integer n = p{' - - - p;* is the
square-free number whose factorization contains the same primes:

rad(n) = p1 - pi.

Exercise. Explain why /(n) = (rad(n)).
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