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Chain conditions for posets

ACC = every strictly ascending chain a0 < a1 < · · · is finite.
This is the class of posets which omit the substructure 〈ω;<〉.
(DCC = dual.)

Easy observations.

1 A nonempty poset P has the DCC iff it is well-founded iff every
nonempty subset has a minimal element. (ACC = dual)

2 A nonempty poset P has the ACC+DCC iff every chain in P is finite.
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Modularity review

TFAE and they define modularity for lattices.

1 L satisfies (x ∨ y) ∧ (y ∨ z) = y ∨ ((x ∨ y) ∧ z).
2 L omits the pentagon as a sublattice.
3 Perspective intervals [a ∧ b, a] and [b, a ∨ b] are isomorphic via

x 7→ b ∨ x and y 7→ a ∧ y.

Modularity is a self-dual property.

The normal subgroup lattice of a group is modular. The submodule lattice of a
module is modular. The left, right, or 2-sided ideal lattices of a ring are
modular.
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Chain conditions for modular lattices
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Chain conditions for complemented modular lattices

As one might expect, a complemented modular lattice has ACC iff it has
DCC. One might expect that whenever a0 < a1 < a2 < · · · , and a⊥i is a
complement of ai for each i, then a⊥0 > a⊥1 > a⊥2 > · · · . This turns out to be
false, due to the fact that complements need not be unique. Instead:

Lm. If L is a modular lattice and a < b are both complemented, then for any
complement a⊥ of a there exists a complement b⊥ of b, such that a⊥ > b⊥.

Proof.
Given a complement a⊥ of a, choose any complement b′ of b. Define
b⊥ := a⊥ ∧ (a ∨ b′). Check that b⊥ is a complement of b and a⊥ > b⊥. 2

Examples. Subspace lattices of k-vector spaces are complemented modular
lattices. If A = k1 × · · · × kn is a finite product of fields, then submodule
lattices of A-modules are complemented modular lattices.
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Consequences of modularity in ring theory

1 Any finite (subdirect) product of Noeth. rings or modules is Noeth.
2 (Modularity unnecessary) Any quotient of a Noeth. ring or module is

Noeth. Any submodule of a Noeth. module is Noeth.
3 If 0→ L→ M → N → 0 is exact, then M is Noeth. iff both L and N are.
4 F.g. free modules over Noetherian rings are Noetherian:

0→ AA→ AA⊕ AA→ AA→ 0 is exact.
5 If A is a Noeth. commutative ring, then any finitely generated A-module

N is Noeth. (A Noeth. ⇒ AA Noeth. ⇒ (⊕n
AA) Noeth. ⇒ (⊕n

AA)/L
Noeth.)

All remain true if ‘Noetherian’ is replaced by ‘Artinian’.
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Finitely generated rings and k-algebras are Noetherian

Ideal generation is an algebraic closure operator, so A Noetherian⇔ every
ideal of A is f.g.

The Hilbert Basis Theorem. If A is Noetherian, then A[x] is Noetherian.

Proof. Given I � A[x], let L = (a1, . . . , an) � A be the ideal of leading
coefficients of members of I, say fi = aixei + · · · ∈ I. Let e = max{ei}.
I = (f1, . . . , fn) + I ∩M where M = 〈1, x, . . . , xe−1〉AMod. M is Noetherian as
an A-module, so I is f.g. as an ideal. 2
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Coordinate rings are Noetherian

The equation x2 + y2 = 1 defines a circle Γ in R2.
The ring R[x, y] may be viewed as the ring of polynomial functions from
R2 → R.
Elements g ∈ R[x, y] can be restricted to Γ to obtain polynomial functions
g : Γ→ R. The ring of restricted functions is called the coordinate ring of Γ.
In this example, the coordinate ring A(Γ) is isomorphic to
R[x, y]/(x2 + y2 − 1), since g, h ∈ R[x, y] have the same restriction to Γ iff
g− h restricts to the zero function on Γ iff g− h is divisible by the irreducible
polynomial x2 + y2 − 1.

This can be generalized to any field k in place of R and any algebraic subset
Γ ⊆ kn. (Algebraic set = common zero locus of a collection of polynomials.)
A(Γ) is the coordinate ring of Γ. It is Noetherian since it is a quotient of
k[x1, . . . , xn].
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One last thing about Noetherian rings

Thm. If A is Noetherian, then every ideal I � A contains a power of its
radical,

√
I.

Proof.
Suffices to work in A/I and prove (∃k)(Nk = (0)).
If N = (a1, . . . , an), where aei

i = 0, then Nk is generated by elements of the
form af1

1 · · · a
fn
n ,

∑
fi = k. If k ≥

∑
ei, then (∃j)(fj ≥ ej), so af1

1 · · · a
fn
n = 0.

Hence Nk = (0). 2

Example. (Noetherianness is a necessary hypothesis)
A = 〈x1, x2, x3, . . . | x2

1 = 0, x2
2 = x1, x2

3 = x2, . . .〉 has N = (x1, x2, . . .), and
N2 = N 6= (0).
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1 · · · a
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The structure of Artinian rings

Thm. A commutative ring is Artinian iff it is a finite product of Artinian local
rings.

Proof.
[If] Modularity.

[Only if] Main stages:

1 Stage 1: Show that any I � A minimal for the property that it contains a
nonunit, nonnilpotent element must be I = (e) for some idempotent e.

2 Stage 2: Show that A ∼= A/(e)× A/(1− e) and the second factor is an
Artinian local ring.

3 Stage 3: Continue splitting off local factors. This must terminate in
finitely many steps with A isomorphic to a product of Artinian local
rings.

Chain conditions 10 / 16
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Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1:

Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.

I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2),

so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).

If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.

Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2:

A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions.

The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)].

The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3:

We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite.

The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.

For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals.

Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



Stages

Stage 1: Let I � A be minimal for the property that it contains a nonunit,
nonnilpotent element, a.
I = (a) = (a2), so (∃r)(ra2 = a).
If e = ra, then e2 = r(ra2) = ra = e.
Moreover, I = (a) ⊇ (ra) = (e) ⊇ (ra2) = (a) = I, so I = (e).

Stage 2: A ∼= A/(e)× A/(1− e) since central idempotents yield direct
decompositions. The ideal lattice of A/(1− e) is isomorphic to the interval
[(1− e),A] in the ideal lattice of A, which is perspective with [0, (e)]. The
latter interval has a maximal proper element (e) ∩N.

Stage 3: We argue that the number of direct factors cannot exceed the number
of maximal ideals, which is finite. The first element of this is from calg1p4.
For the second element, assume that m0,m1, . . . is an infinite sequence of
distinct maximal ideals. Then m0 > m0 ∩m1 > m0 ∩m1 ∩m2 > · · · is an
infinite strictly decreasing chain of ideals.

Chain conditions 11 / 16



More on the structure of Artinian rings

Lm. The maximal ideal of an Artinian local ring is nilpotent.

Proof. Assume m ≥ m2 ≥ · · · ≥ mk = mk+1 = I 6= 0. Choose a ∈ I so that
(a) is minimal for I · (a) 6= 0. Since I2 = I, I(I(a)) = I(a) 6= 0, so
I(a) = (a). By NAK, (a) = 0, contradiction. 2

Thm. An Artinian ring has Krull dimension zero. (All primes are maximal.)

Proof. Local rings with nilpotent maximal ideal have Krull dimension zero,
and, by calg1p4, dim(R× S) = max{dim(R), dim(S)}. 2

Thm. (Commutative version of Hopkins-Levitski)
An Artinian ring is Noetherian.

Proof. Suffices to prove it for local A. The finite chain
A > m ≥ m2 ≥ · · · ≥ mk = (0) has sections mr/mr+1 that are A/m-vector
spaces. Subspace lattices are complemented modular lattices, hence satisfy
ACC iff DCC. Hence each section satisfies ACC iff DCC. 2
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More on the structure of Artinian rings

Thm. A commutative ring is Artinian iff it is Noetherian of Krull dimension
zero.

Proof. Assume A is Noetherian with Krull dimension zero. Let
(0) = Q1 ∩ · · · ∩ Qk be a primary decomposition. Let pi =
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Qi be the prime
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Commutative Artinian rings

TFAE for a commutative ring A.

1 A is Artinian.
2 A is Noetherian and has Krull dimension zero.
3 A is a finite product of Artinian local rings.
4 A has finitely many prime ideals, all maximal, and their intersection
∩mi = J(A) equals NA, which is finitely generated.

Examples. Fields and the finite rings Zpk are Artinian local rings. A common
generalization of Fq = GF(p,m) and Zpk is the Galois ring GF(pk,m):

GF(pk,m) = Zpk [x]/(f (x))

where f (x) ∈ Zpk [x] is a polynomial of degree m that is irreducible modulo p.
(It is not obvious that this data determines the ring uniquely, but it does.) The
smallest nontrivial example is Z4[x]/(x2 + x + 1).
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Spec(A) when A is Noetherian

Kaplansky’s Question. (∼1950) Which topological spaces arise as Spec(A)
for A a commutative Noetherian ring?

Known properties:

1 The topology on the set of primes and the inclusion order on the set of
primes mutually determine one another. (calg2p6)

2 P = 〈Spec(A);⊆〉 has the following properties:

1 P has finitely many minimal elements (calg2p5)
2 P satisfies ACC (!)
3 P satisfies DCC (from the Krull Height Theorem)
4 The class F of finitely generated order-filters is closed under arbitrary

intersection. (calg2p6)
5 Nontrivial noncovering intervals [p, r] are infinite. (If p < q < r, then

there exist infinitely may distinct qi such that p < qi < r.) (from Prime
Avoidance+Krull Height)

Krull Height Theorem. If A is a commutative Noetherian ring and I � A can
be generated by n elements, then any prime minimal over I has height at most
n. (In particular, every prime has finite height.)
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Prime Avoidance Theorem. If

1 I1, . . . , In, J are ideals,
2 Ij is prime for j ≥ 3, and
3 J ⊆ ∪n

i=1Ii,

then J ⊆ Ij for some j.

Proof. Induction on n. The n = 1 case is clear. For n = 2, choose
x1 ∈ J − I2 ⊆ I1 and x2 ∈ J − I1 ⊆ I2. Hence x1 + x2 ∈ J − (I1 ∪ I2),
contradiction. Now assume n ≥ 3. Choose xj ∈ (J − ∪j 6=iIi). Necessarily
xj ∈ Ij. Now (x1 · · · xn−1) + xn belongs to J but to no Ij, contradiction. 2

Application. Let A be a commutative Noetherian ring. If p < q < r are
prime, then there exist infinitely may distinct primes qi such that p < qi < r.

Proof. Shrink interval so that [p, r] has height 2. May assume that p = (0) and
that r is maximal. If only finitely many height-1 primes exist, q1, . . . , qn, then
choose a ∈ r− (∪n

i=1qi). Any prime minimal over (a) has height 1 by Krull
Height Theorem (needs Noetherianness), and cannot be any of the q’s. 2
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