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Algebraization

Example. (Euclidean space)

E3 −→ R −→ exact calculation

En = Rn ←− R

Fn ←− F
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Algebra

Definition. A 3-sorted algebra is a structure

〈A,B,C; x⊕ y, x ∨ y,F1(x), . . .〉
= 〈sets/universes/sorts; operations among sorts〉

Example. Z = 〈integers; ·,+,−, 0, 1〉.
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Simplest examples of ‘algebraization’

Question. What are the laws of functional composition?
(f ◦ f ) ◦ (g ◦ g) = (f ◦ g) ◦ (f ◦ g)?

Answer leads to

1 semigroups and monoids
2 groups
3 small categories
4 rings
5 k-algebras

1 What are we algebraizing?
2 How do we do it?
3 What did we learn?
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Move to whiteboard!

Algebraization 5 / 13



Fully Algebraizing Functional Composition

Now we consider the composition of functions between different sets.
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Definition of “Category”

Definition. A category is a 2-sorted partial algebra
C = 〈O,M; ◦, id, dom, cod〉 where

(1) Ob(C) = O is a class whose members are called objects,
(2) Mor(C) = M is a class whose members are called morphisms,
(3) ◦ : M ×M → M is a binary partial operation called composition,
(4) id : O→ M is a unary function assigning to each object A ∈ O a

morphism idA called the identity of A,
(5) dom, cod : M → O are unary functions assigning to each morphism f

objects called the domain and codomain of f respectively.

The laws defining categories are:

(1) f ◦ g exists if and only if dom(f ) = cod(g).
(2) Composition is associative when it is defined.
(3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ).
(4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f .
(5) dom(idA) = cod(idA) = A.
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Functors = homomorphisms between categories

Since categories are algebraic structures, we immediately know the meaning
of subcategory, quotient category, etc., especially “homomorphism”:

Definition. A functor F : C → D is a homomorphism from C to D. In detail,
F is a pair of mappings, both called F, between object classes and morphism
classes, F : Ob(C)→ Ob(D) and F : Mor(C)→ Mor(D), where

(1) F(f ◦ g) = F(f ) ◦ F(g),

(2) F(idA) = idF(A),

(3) F(dom(f )) = dom(F(f )), and

(4) F(cod(f )) = cod(F(f )).
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∃ A Cayley Representation Theorem

A category is small if O and M are sets. (Enough to assume that M is a set.)

Theorem
Every small category is embeddable in the category of sets.

Idea of proof.
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Examples of Categories

Examples.
(0) Empty category.

(1) (One object category) A category with one object is determined by its
monoid of morphisms. If 〈M; ◦, 1〉 is a monoid, then

M = 〈{∗},M; ◦, id, dom, cod〉

is the associated category. Here id(∗) = 1 and dom, cod : M → {∗} are
constant. M = 〈ordinals; +, 0〉 yields a large 1-object category.

(2) If 〈P;≤〉 is a partially ordered set, then the elements of P may be thought
of as the objects of a category whose morphisms are the arrows a→ b
whenever a ≤ b in P. P = 〈ordinals;≤〉 yields a large cat. of this type.

(3) Any class of algebras equipped with all algebra homomorphisms is a
category. (E.g. CRng, R-Mod.)

(4) Top and TopH are categories.
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Repeat

All of this can be repeated in the enriched category of abelian groups. This
category is “enriched” in the sense that each hom-set Hom(A,B) has a
structure beyond that of a set (i.e., it is an abelian group itself).

Reason:
If α, β ∈ Hom(A,B), then the pointwise sum (α+ β)(x) := α(x) + β(x) is
also in this set: compose

A
(α,β)→ B× B +→ B

This is a hom, (say ϕ+), since + : B× B→ B is a hom. Check:
1 ϕ+((a, b) + (c, d)) = (a + c) + (b + d) and
ϕ+((a, b)) + ϕ+((c, d)) = (a + b) + (c + d).

2 ϕ+(−(a, b)) = (−a) + (−b) and −ϕ+((a, b)) = −(a + b).
3 ϕ+((0, 0)) = 0 + 0.
4 similarly ϕ−(x) and ϕ0 are homs.

Algebraization 11 / 13



Repeat

If you repeat the algebraization arguments for T(A) within the category of
abelian groups, you will see that the correct algebraization of End(A) for A an
abelian group is a structure

〈R; ◦,+,−, 0, 1〉

such that
1 〈R; ◦, 1〉 is a monoid
2 〈R; +,−, 0〉 is an abelian group
3 distributive laws hold.

Conversely, the proof of the Cayley Repn Thm embeds any abstract structure
satisfying these identities (i.e., any ring) into the concrete ring End(A).

If you replace the category of “abelian groups” with “vector spaces over field
k” you obtain the definition of “k-algebra”, which abstracts the properties of
Endk(V), Mn(k).
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Why *commutative* rings?

1. (Number theory)
From the historical concept of “number”:

〈N+; S(x)〉 → 〈N; ·,+, 0〉 → Z→ Q→ R→ C

2. (Functional analysis, algebraic geometry)
As auxiliary structures to study spaces.
E.g. for X a compact Hausdorff space X, the commutative ring C(X) of
continuous real-valued functions, plays a role similar to that played by the
Galois group Gal(K/k), which is used to study the k-algebra structure of the
extension field K.
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