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Localization

The problem. Given a ring A and elements u, v ∈ R, find the most general
extension of A in which u and v are units.

The obvious solution. If A = 〈G | R〉, then the solution is

〈G ∪ {x, y} | R ∪ {ux = 1 = vy}〉.

(〈G | R〉 = A. 〈G ∪ {x, y} | R〉 ∼= A⊗Z Z[x, y] ∼= A[x, y].
〈G ∪ {x, y} | R ∪ {ux = 1 = vy}〉 ∼= A[x, y]/(ux− 1, vy− 1).)

Elements of A[x, y]/(ux− 1, vy− 1) = A[u−1, v−1] simplify to the form
a(u−1)m(v−1)n.

Simpler, more direct (and standard) approach.

1 Start instead with S = {u, v}∗ = {1, u, v, u2, uv, . . .}, an MC set.
2 Define S−1A to consist of ordered pairs a/s := (a, s) modulo equiv. reln.

a/s ∼ b/t iff (∃u ∈ S)(u(sb− ta) = 0). (u=“premultiplier”)
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Check some things

∼ is transitive.
If a/r ∼ b/s ∼ c/t, ∃u, v ∈ S such that u(rb− sa) = 0 = v(sc− tb). Then
w = uvs ∈ S and

w(rc− ta) = uvsrc− uvsta = vt(u(rb− sa)) + ur(v(sc− tb)) = 0,

so a/r ∼ c/t.

premultiplier u ∈ S is necessary for transitivity of ∼.
E.g., when 0 ∈ S,
0/1 ∼ 0/0 ∼ 1/0, yet 0/1 6∼ 1/0 without the premultiplier.
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The universal property

Since S−1A is meant to equal 〈A ∪ S−1 | {ss−1 = 1 | s−1 ∈ S−1}〉, and since
the inverse of a unit is unique, S−1A has the following universal property:

Thm. If α : A→ B is a homomorphism and α(S) ⊆ B×, then α has a unique
extension to α : S−1A→ B.
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Some notation and terminology

If the elements of S are to become units, then so must any divisor of an
element of S. Call an MC set saturated if it is closed under divisors.
(ab ∈ S⇒ a, b ∈ S.)

Thm. A subset S ⊆ A is a saturated MC set iff A− S is a union of prime
ideals. (If this union contains one prime p, we write Ap for S−1A and call it
the localization of A at p.)

Proof.
[If:] The complement of any ideal is saturated. The complement of a prime
ideal is also MC. The class of SAT+MC subsets of A is closed under arbitrary
intersection. Hence the complement of a union of primes is SAT+MC. 2

[Only if:] If S is SAT, then A− S =
⋃

t/∈S(t) is a union of ideals. Since S is
MC, any (t) disjoint from S is extendible to a prime pt disjoint from S.
A− S =

⋃
t/∈S pt. 2
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The effect of localization upon ideals

The homomorphism α : A→ S−1A : a 7→ a/1 allows us to extend and
contract ideals from A to S−1A: Ie = S−1I = {i/s | i ∈ I, s ∈ S},
Jc = α−1(J).

Thm. (See AM Prop. 3.11)

1 Every ideal of S−1A is an extended ideal. (J = Jce.)
2 Iec =

⋃
s∈S(I : s) = sat(I). (I = sat(I) iff λs : A/I → A/I is 1-1 ∀s.)

3 Extension and contraction restrict to inverse bijections between the
primes of S−1A and the primes of A disjoint from S. (sat(p) = p or A.)

4 S−1(
∑

Ij) =
∑

S−1Ij, S−1(I ∩ J) = S−1I ∩ S−1J
S−1(IJ) = (S−1I)(S−1J), S−1

√
I =
√

S−1I.
5 S−1J(I) need not equal J(S−1I). A = I = Z, S = {3, 5, 7, . . .}∗.

(2) x ∈ Iec iff x/1 ∼ i/t ∈ Ie iff (∃u)(u(i− tx) = 0) iff (∃u)(ui = utx) implies
x ∈

⋃
s∈S(I : s) implies (∃s)(xs = j ∈ I) implies x/1 ∼ j/s ∈ Ie. 2
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I =
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S−1I.
5 S−1J(I) need not equal J(S−1I). A = I = Z, S = {3, 5, 7, . . .}∗.
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Restriction and extension of scalars

The homomorphism A→ S−1A : a 7→ a/1 induces functors of restriction and
extension of scalars between A-Mod and S−1A-Mod. The functor of extension
of scalars takes M to S−1A⊗A M ∼= S−1M, where S−1M is constructed in the
expected way.
(S−1M consists of fractions m/s modulo ∼.)
(Isomorphism S−1A⊗A M → S−1M is induced by (a/s)⊗ m 7→ am/s.)
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Localization is an exact additive functor

Thm. If L α→ M
β→ N is exact, then

S−1L S−1α−→ S−1M
S−1β−→ S−1N (†)

is exact for any MC S.

Proof.
Localization is an additive functor, so (†) is a chain complex. Hence only need
to prove ker(S−1β) ⊆ im(S−1α).
If m/s ∈ ker(S−1β), then β(m)/s = 0/1 in S−1N. Hence
(∃u)(u(β(m)− 0) = 0), or um ∈ ker(β) = im(α). Hence α(`) = um for
some ` ∈ L. Hence m/s = α(`/(us)) ∈ im(S−1α). 2
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Local properties

A property P of a ring or module is local if “A (or M) has P” iff “Ap (or Mp)
has P for all prime ideals p”. (P is preserved and reflected by localization to
all primes.)

Examples.

1 M = 0.
2 L→ M → N is exact at M.

(1) [M = 0 locally implies M = 0; contradiction]
Assume that x ∈ M − {0}. Let p be a maximal ideal containing Ann(x).
Claim: x/1 ∈ Mp − 0. Else x/1 ∼ 0/s, leading to (∃u)(usx = 0). But
us ∈ S = A− p, so us /∈ Ann(x). 2

(2) [Exactness of complex is local; contradiction]

If L α→ M
β→ N inexact at M, and m ∈ ker(β)− im(α), then there is a

maximal p containing (im(α) : m). Then Lp → Mp → Np inexact at Mp. 2
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Check last claim

Assume that L α→ M
β→ N is inexact at M, and that m ∈ ker(β)− im(α).

Assume that p is a maximal ideal containing (im(α) : m). Assume that

Lp
αp−→ Mp

βp−→ Np is exact at Mp.

Since m ∈ ker(β), βp(m/1) = β(m)/1 = 0, so m/1 ∈ ker(βp). Hence
m/1 = αp(`/s) = α(`)/s. Hence (∃u)(u(α(`)− sm) = 0), or α(u`) = usm.
Hence us ∈ (im(α) : m) ⊆ p, contradicting u, s ∈ S = A− p. 2
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The effect of localization on Spec

We view Spec(A) as a topological space, and each f ∈ A as a “continuous” or
“polynomial” function defined on Spec(A). The “value” of the function f at
the point p is f/p ∈ A/p. The function f “vanishes” at p if f/p = 0/p, i.e. if
f ∈ p.

If S = {f}∗ = {1, f , f 2, . . .}, then we often write Af for S−1A. These are
viewed as rational functions of the form a/f k defined on
Spec(Af ) = Spec(A)− V(f ) = D(f ) = supp(f ).

More generally, for any MC S, the ring S−1A is viewed as the ring of rational
functions of the form a/s defined on on
Spec(S−1A) = Spec(A)−

⋃
s∈S V(s) =

⋂
s∈S D(s) =

⋂
s∈S supp(s) = supp(S).

An interesting special case is when S = A− p, where Spec(Ap) equals the
intersection of all distinguished open sets containing the point p.
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