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~ is transitive.
Ifa/r ~ b/s ~ c/t, 3u,v € S such that u(rb — sa) = 0 = v(sc — tb). Then
w = uvs € S and

w(rc — ta) = uvsrc — uvsta = vt(u(rb — sa)) + ur(v(sc — tb)) = 0,
soa/r~c/t.

premultiplier # € S is necessary for transitivity of ~.
E.g., when O € §,
0/1~0/0~1/0, yet 0/1 4 1/0 without the premultiplier.

Localization 3/11



The universal property

Localization 4/11



The universal property

Since S~!A is meant to equal (A US™! | {ss™! =1|s71 € S71}),

Localization 4/11



The universal property

Since S~!A is meant to equal (A US~! | {ss=! = 1| s~ € §7'}), and since
the inverse of a unit is unique,

Localization 4/11



The universal property

Since S7'A is meant to equal (AU S™! | {ss7! =1 |s~! € §7!}), and since
the inverse of a unit is unique, S~'A has the following universal property:

Localization 4/11



The universal property

Since S7'A is meant to equal (AU S™! | {ss7! =1 |s~! € §7!}), and since
the inverse of a unit is unique, S~'A has the following universal property:

Thm. If @ : A — B is a homomorphism and «(S) C B*, then « has a unique
extensionto @ : S~'A — B.
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[Only if:] I S is SAT, then A — § = (J,¢5(7) is a union of ideals. Since § is
MG, any (7) disjoint from S is extendible to a prime p, disjoint from S.

A—S: UI¢SPI‘ O
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The homomorphism o : A — S™!A : a + a/1 allows us to extend and
contract ideals from A to S!'A: I¢ =S~ 'I = {i/s | i€ I,s € S},
J¢=a~1(J).
Thm. (See AM Prop. 3.11)
@ Every ideal of S7'A is an extended ideal. (J = J.)
Q I = U,eg(I = s) =sat(l). (I = sat(l)iff A\; : A/T — A/I'is 1-1 Vs.)
© Extension and contraction restrict to inverse bijections between the
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The homomorphism A — S~!A : @+ a/1 induces functors of restriction and
extension of scalars between A-Mod and S~'A-Mod. The functor of extension
of scalars takes M to S™'A @4 M = S—'M, where S~'M is constructed in the

expected way.

(S~'M consists of fractions m /s modulo ~.)

(Isomorphism S™'A ®4 M — S~'M is induced by (a/s) @ m — am/s.)
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viewed as rational functions of the form a/f* defined on
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More generally, for any MC S, the ring S™'A is viewed as the ring of rational
functions of the form a/s defined on on
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An interesting special case is when § = A — p, where Spec(A;) equals the
intersection of all distinguished open sets containing the point p.
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