COMMUTATIVE ALGEBRA HOMEWORK ASSIGNMENT III

PROBLEMS

All rings are commutative.

1. (Howie Jordan, Bob Kuo, Mateo Muro)

Let M be a finitely generated R-module. Show that $R/I \otimes_R M = 0$ iff there exists $i \in I$ such that $(1+i) \in Ann(M)$ in two different ways:

- (1) using Nakayama's Lemma.
- (2) avoiding Nakayama's Lemma.

2. (Ezzedine El Sai, Chase Meadors, Connor Meredith)

Let \mathbb{F} be a field. Suppose that A and B are \mathbb{F} -algebras and that $B = \mathbb{F}[b]$ is generated as an \mathbb{F} -algebra by a single element $b \in B$.

- (a) Show that $A \otimes_{\mathbb{F}} B \cong A[x]/\min_{b,\mathbb{F}}(x)$.
- (b) Restrict now to the case where A and B are fields. Give an example where $A \otimes_{\mathbb{F}} B$ has nonzero nilpotent elements, and another example where $A \otimes_{\mathbb{F}} B$ ($\neq 0$) has no nonzero nilpotent elements.

3. (Toby Aldape, Michael Levet, Adrian Neff)

- Let m be an integer that is not a perfect square.
- (a) Show that $\mathbb{Q}[\sqrt{m}] \otimes_{\mathbb{Q}} \mathbb{Q}[\sqrt{m}] \cong \mathbb{Q}[\sqrt{m}] \times \mathbb{Q}[\sqrt{m}]$ as \mathbb{Q} -algebras.
- (b) Find the idempotents in $\mathbb{Q}[\sqrt{m}] \otimes_{\mathbb{Q}} \mathbb{Q}[\sqrt{m}]$ that induce the direct decomposition described in (a).
- (c) Find an idempotent $e \neq 0, 1$ in $\mathbb{Q}[\sqrt[3]{2}] \otimes_{\mathbb{Q}} \mathbb{Q}[\sqrt[3]{2}]$.

4. (Howie Jordan, Bob Kuo, Mateo Muro)

(There is no contravariant analogue of the tensor product)

(a) Let k-Vec be the category of vector spaces over the field k. Show that the double dual functor $V \mapsto V^{**}$ is an additive covariant functor that is not representable.

(b) A contravariant version of the tensor product, say $B \boxtimes_R C$, might be expected to satisfy the property that it represents the composite of the contravariant representable functors $\operatorname{Hom}_R(_,B)$ and $\operatorname{Hom}_R(_,C)$. Show that there is no such general construction for categories of modules.

5. (Ezzedine El Sai, Chase Meadors, Connor Meredith)

Let $\varphi : R \to S$ be a ring homomorphism. Show that the functor of extension of scalars from *R*-Mod to *S*-Mod induces a commutative semiring homomorphism from $\langle R$ -Mod; $\otimes, \oplus, 0, R \rangle / \cong$ to $\langle S$ -Mod; $\otimes, \oplus, 0, S \rangle / \cong$.

6. (Toby Aldape, Michael Levet, Adrian Neff) Suppose that

 $0 \longrightarrow \operatorname{Hom}_{R}(C, M) \xrightarrow{\circ \psi} \operatorname{Hom}_{R}(B, M) \xrightarrow{\circ \varphi} \operatorname{Hom}_{R}(A, M)$

is exact for every R-module M. Show that

$$A \xrightarrow{\varphi} B \xrightarrow{\psi} C \longrightarrow 0$$

is exact. (Hint: Consider what happens when $M = C/im(\psi)$, M = C and $M = B/im(\varphi)$.)

7. (Howie Jordan, Bob Kuo, Mateo Muro)

An R-module M is finitely presentable iff there is an exact sequence

$$\oplus^n R \xrightarrow{\alpha} \oplus^m R \xrightarrow{\beta} M \longrightarrow 0.$$

Show that if $0 \to A \to B \to C \to 0$ is exact, and both A and C are finitely presentable, then B is finitely presentable.

8. (Ezzedine El Sai, Chase Meadors, Connor Meredith)

Show that if A is a flat R-module, then its character module $\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})$ is an injective R-module. (The converse is also true, but you don't have to prove it.)

9. (Toby Aldape, Michael Levet, Adrian Neff)

Show that the the class \mathcal{P} of projective *R*-modules is closed under \oplus and \otimes and contains 0 and *R*. Show that the same is true if we replace \mathcal{P} with the subclass $\mathcal{P}_{f.g.}$ of finitely generated projective *R*-modules.

 $\mathbf{2}$