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7. Let A be a commutative ring with 1.

(a) Let S be the set of elements of A that are not zero divisors. Show that S is
the largest subset of A with the property that the canonical homomorphism
A → S−1A : a 7→ a/1 is an embedding. (S−1A is called the total ring of
fractions of A.

(b) Show that if A is Noetherian, then the total ring of fractions of A has finitely
many maximal ideals. (A ring with finitely many maximal ideals is called
semilocal.)

(a) We first show that S satisfies the desired property. For this purpose, let ϕ : A →
S−1A : a 7→ a/1 be the canonical homomorphism and suppose a, b ∈ A with ϕ(a) = ϕ(b).
Then by definition of S−1A, there is some u ∈ S such that u(a · 1− b · 1) = 0. Since u is not
a zero divisor, we must have a · 1− b · 1 = 0, or simply a = b, so ϕ is injective.

Now suppose T is a multiplicatively closed subset of A that contains a zero divisor, say
z, and let φ : A→ T−1A, a 7→ a/1 be the canonical homomorphism. Since z is a zero divisor,
there is some nonzero w ∈ A such that zw = 0. Rewriting this, we have z(1 · w − 0 · 1) = 0,
so φ(w) = φ(0). However, w was nonzero, so this shows that φ is not injective. Overall,
we see that if T is any multiplicatively closed subset of A containing a zero divisor, then
A→ T−1A : a 7→ a/1 is not an embedding.

By the previous paragraph, if T is a multiplicatively closed subset of A such that A →
T−1A : a 7→ a/1 is an embedding, then T must not contain any zero divisors, and therefore
must be contained in S.

(b) We first prove two lemmas. The second lemma will show that Ass(AA) is finite, which
we will use to show that S−1A has only finitely many maximal ideals. The first lemma will
be used several times in proving the second.

Lemma 1: If p ∈ Ass(AA), then Ass(AA/p) = {p}.
Proof: Suppose p ∈ Ass(AA) and recall that p = (0 : m) for some m ∈ A and A/p ∼= 〈m〉.

This immediately yields p ∈ Ass(AA/p). Now suppose q ∈ Ass(AA/p). We will show that
q = p.

� Since q ∈ Ass(AA/p), there is some n ∈ A − p such that q = (0 : n/p). That is,
q = {x ∈ A | xn ∈ p}. This yields q ⊆ {x ∈ A | x ∈ p} = p once we recognize that p is
prime and n 6∈ p.
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� Choose m ∈ A so that A/p ∼= 〈m〉 = {rm | r ∈ A} and let n ∈ 〈m〉 so that q = (0 : n).
Since n ∈ 〈m〉, there is some r ∈ A such that rm = n. Now let x ∈ p. Then

x · n = x · (rm)

= x · (r ·m)

= (xr) ·m
= (rx) ·m
= r · (x ·m)

= r · 0
= 0

so x ∈ q. Ultimately, p ⊆ q.

These two points together show q = p, so in fact Ass(AA/p) = {p}. �

Lemma 2: If M is a finitely generated module over a Noetherian ring A, then Ass(M)
is finite.

Proof: If M = 0 we are done, so suppose M 6= 0. Suppose for sake of contradiction that
Ass(M) is infinite and let p1, p2, ... be infinitely many distinct elements of Ass(M). We will
inductively build an infinitely ascending chain of submodules M0 < M1 < M2 < · · · of M
such that for all i ∈ N, Mi+1/Mi

∼= A/pi+1 and Ass(Mi) ⊆ {p1, ..., pi}. Since M is finitely
generated and A is Noetherian, M is itself Noetherian, so this will be a contradiction. To
begin, set M0 = 0 and recall that associated primes are prime annihilators. In particular,
there is some m1 ∈ M such that A/p1 ∼= 〈m1〉 ≤ M . Let M1 = 〈m1〉. We see directly that
M1/M0 = M1

∼= A/p1 and Ass(M1) = Ass(A/p1) = {p1}.

Let i > 1 and suppose the chain M0 < M1 < · · · < Mi has already been constructed.
There is an exact sequence of modules 0 → Mi → M → M/Mi → 0, which yields the
containments

Ass(Mi) ⊆ Ass(M) ⊆ Ass(Mi) ∪ Ass(M/Mi)

By the inductive hypothesis, Ass(Mi) ⊆ {p1, ..., pi}, which does not contain pi+1. Since
pi+1 ∈ Ass(M) ⊆ {p1, ..., pi} ∪ Ass(M/Mi), we therefore have pi+1 ∈ Ass(M/Mi). Hence,
there is some mi+1 ∈ M/Mi with A/pi+1

∼= 〈mi+1〉 ≤ M/Mi. Let Mi+1 be the unique
submodule of M properly containing Mi such that Mi+1/Mi = 〈mi+1〉.

It remains to check that Mi+1/Mi
∼= A/pi+1 and Ass(Mi) ⊆ {p1, ..., pi+1}. For the former

condition, note that by construction, Mi+1/Mi = 〈mi+1〉 ∼= A/pi+1. For the latter condition,
note that there is a short exact sequence 0 → Mi → Mi+1 → Mi+1/Mi → 0. This sequence
yields the containments Ass(Mi) ⊆ Ass(Mi+1) ⊆ Ass(Mi) ∪ Ass(Mi+1/Mi). By inductive
hypothesis, Ass(Mi) ⊆ {p1, ..., pi}, so we have

Ass(Mi+1) ⊆ {p1, ..., pi} ∪ Ass(Mi+1/Mi) = {p1, ..., pi} ∪ Ass(A/pi+1) = {p1, ..., pi+1}

�
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An immediate corollary of the lemma is that Ass(AA) is finite: A is a Noetherian ring
and is therefore finitely generated as a left A-module under the usual action. We intend to
use this to show that S−1A only has finitely many maximal ideals. We will show that the
maximal primes of S−1A are in bijective correspondence with the primes of A maximal for
the property of being contained in a (finite) union of associated primes. Then by appealing
to prime avoidance, we conclude that such primes are simply the primes appearing in the
union, of which there are only finitely many, completing the proof.

Recall that the primes of S−1A are in bijective, order-preserving, correspondence with
the primes of A disjoint from S. Since S is the set of all non-zero-divisors of A, the primes
of S−1A are in bijective, order preserving, correspondence with the primes of A consisting
entirely of zero divisors.

Let m be a nonzero zero divisor of A and suppose x ∈ (0 : m). If x 6= 0, then x is itself
a zero divisor since xm = 0. Hence, we can write the set of zero divisors of A as the union
of all annihilators of nonzero zero divisors. Or, even better, we can write the set of zero
divisors of A as the union of all maximal elements of S := {(0 : m) | m ∈ A−{0}}. We now
show that every maximal element of S is an associated prime of AA. Since associated primes
are prime annihilators, it suffices to show maximal elements of S are prime. Let (0 : m) be
maximal in S and suppose rs ∈ (0 : m) with s 6∈ (0 : m). Since A is commutative, any
annihilator of m annihilates sm. Therefore, (0 : m) ⊆ (0 : sm). Since s 6∈ (0 : m), sm 6= 0
and so (0 : sm) ∈ S. But (0 : m) is maximal and below (0 : sm), so (0 : sm) = (0 : m).
Moreover, since rs ∈ (0 : m), we have rsm = 0, so r ∈ (0 : sm). Hence, r ∈ (0 : m), so
(0 : m) is prime. Since Ass(AA) is finite, we can now list the maximal elements of S as p1,
..., pk.

The previous two paragraphs together imply that the primes of S−1A are in bijective,
order-preserving, correspondence with the primes of A contained in p1∪· · ·∪pk. In particular,
the maximal ideals of S−1A (which are prime) are in bijective correspondence with the primes
maximal for the property of being contained in p1∪· · ·∪pk. By the prime avoidance lemma,
every ideal contained in p1 ∪ · · · ∪ pk is contained in pi for some i ∈ {1, ..., k}. Hence, a
prime maximal for the property of being contained in p1 ∪ · · · ∪ pk is a prime maximal for
the property of being contained in some pi, i.e., is equal to some pi. Overall, we see that
S−1A has k maximal ideals, so we are done.
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