- 2. Let M be an A-module, and let $m, n \in M$ and $r \in A$ be elements.
 - (a) Show that the set of primes \mathfrak{p} where m = 0 is an open subset of Spec(A), and that it is all of Spec(A) iff m = 0. (Here $m \in M_{\mathfrak{p}}$ is shorthand for $m/1 \in M_{\mathfrak{p}}$)
 - (b) Show that the set of primes \mathfrak{p} where m = n is an open subset of $\operatorname{Spec}(A)$, and that it is all of $\operatorname{Spec}(A)$ iff m = n.
 - (c) Show that the set of primes \mathfrak{p} where r is nilpotent is an open subset of Spec(A), and that it is all of Spec(A) iff r is nilpotent.
 - (d) Show that the set of primes \mathfrak{p} where r is a unit is an open subset of Spec(A), and that it is all of Spec(A) iff r is a unit.

Proof.

A note regarding notation: superscript c (e.g \mathfrak{p}^c) denotes the set complement, NOT the contraction of an ideal.

(a) $m = 0 \iff m$ is in the 0 submodule. We have a lemma (*Primary decomposition*, slide 15) which states that for a submodule N, the set of primes where $m \in N_{\mathfrak{p}}$ is open in Spec(A), hence the set of primes where m/1 is open.

Moreover, the lemma states that this set of primes is all of Spec(A) iff $m \in N$, which in this case means iff m = 0.

(b) m = n in $M_{\mathfrak{p}}$ iff $\exists u \in \mathfrak{p}^c$ s.t u(m-n) = 0 i.e $u \in (0:m-n)$. This holds iff $(0:m-n) \not\subseteq \mathfrak{p}$ iff $\mathfrak{p} \in V((0:m-n))^c$ which is open.

m-n=0 in all prime localizations iff m-n=0 in M by part (a).

(c) Consider the sets $\alpha_1 = \{\mathfrak{p} | r = 0 \text{ in } A_\mathfrak{p}\}, \ \alpha_2 = \{\mathfrak{p} | r^2 = 0 \text{ in } A_\mathfrak{p}\}, \ \alpha_3 = \{\mathfrak{p} | r^3 = 0 \text{ in } A_\mathfrak{p}\}...$ By part (a) each α_i is an open set in Spec(A). The union $\bigcup_{i>0} \alpha_i$ is the set of primes where r is nilpotent and it's open in Spec(A) since it's the union of open sets.

If r is nilpotent, then it's nilpotent in every localization. Conversely, if $r^n = 0$ in $A_{\mathfrak{p}}$ then $\exists u \in \mathfrak{p}^c \text{ s.t } ur^n = 0$ and since $0 \in \mathfrak{p}$ and $u \notin \mathfrak{p}$ this means that $r^n \in \mathfrak{p} \implies r \in \mathfrak{p}$. Therefore, if r becomes nilpotent for every prime, then it's contained in every prime, and hence it's in \mathfrak{N} .

	Ezzedine El Sai
Commutative Algebra	Michael Levet
Assignment 4	Mateo Muro

(d) r is a unit in $A_{\mathfrak{p}}$ iff \exists an element a/s such that ra/s = 1. In other words, $\exists u, s \in \mathfrak{p}^c$ s.t u(ar - s) = 0. This holds iff $(r) \cap \mathfrak{p}^c \neq \emptyset$ iff $(r) \not\subseteq \mathfrak{p}$. Therefore, the set of primes for which r is a unit is the complement of the closed set V((r)).

If r is a unit then it's a unit in every localization. Conversely, if $(r) \not\subseteq \mathfrak{p}$ for all primes then r is in no maximal ideal, therefore it's a unit.