Commutative Algebra HW4p1

Toby Aldape, Bob Kuo, Connor Meredith

November 2020

Let $L, N \leq M$ be A-modules. Let U be the set of primes for which $L_{p} \subseteq N_{p}$ holds. Show that U is an intersection of open sets in $\operatorname{Spec}(A)$. Show conversely that if V is any intersection of open sets in $\operatorname{Spec}(A)$ then V is exactly the set of primes for which $L_{p} \subseteq N_{p}$ holds for some submodules L, N of some module M.

Proof. First, suppose that L and N are submodules of the module M. Then suppose $q \subseteq p$ are primes of A and $L_{p} \subseteq N_{p}$. Then

$$
L_{q}=(p \backslash q)^{-1}\left(L_{p}\right) \subseteq(p \backslash q)^{-1} N_{p}=N_{q} .
$$

It follows that the collection U for which the inequality holds is downward closed when ordered by inclusion. Then the collection of primes $\operatorname{Spec}(A) \backslash U$ for which the inequality fails must be upward closed. Therefore

$$
\operatorname{Spec}(A) \backslash U=\bigcup_{p \in \operatorname{Spec}(A) \backslash U} V(p),
$$

showing that $\operatorname{Spec}(A) \backslash U$ is a union of closed sets. Therefore its complement U is the intersection of open sets.

First we prove the converse direction when V is some open set. So let $V \subseteq \operatorname{Spec}(A)$ be open. Then $\operatorname{Spec}(A) \backslash V$ is closed. There must be some ideal $I \unlhd A$ such that $\operatorname{Spec}(A) \backslash V=V(I)$ Let $L, M=A / I$ and let $N=0$, the zero submodule. These are all A-modules/submodules. Then $(A / I)_{p}=L_{p} \subseteq N_{p}=0$ if and only if for all $a+I \in A / I$ there is some $t \in A \backslash p$ such that $t(a+I)=0+I$.

If this holds, then given $1+I \in A / I$ there must be $t \in A \backslash p$ such that $t+I=t(1+I)=0+I$, so that $t \in I$. In other words, we must have $(A \backslash p) \cap I \neq \varnothing$, which is equivalent to $I \nsubseteq p$. Conversely, suppose that $I \nsubseteq p$. Then there must be $t \in I$ such that $t \notin p$. Then given $a+I \in A / I$, we know that $t a \in I$ and $t(a+I)=t a+I=0+I$. This establishes that $(A / I)_{p} \subseteq 0$. Therefore $L_{p} \subseteq N_{p}$ if and only if $I \nsubseteq p$, which happens if $p \notin V(I)$, which happens if and only if $p \in U$.

Now suppose that $V=\bigcap_{j \in J} V_{j}$ is the intersection of some collection of open sets. Let $I_{j} \unlhd A$ be such that $V\left(I_{j}\right)=\operatorname{Spec}(A) \backslash U_{j}$. Let $L, M=\bigoplus_{j \in J} A / I_{j}$ and let N be the zero submodule. We have already shown that $\left(A / I_{j}\right)_{p} \subseteq 0$ if and only if $p \in V_{j}$. Then

$$
\left(\bigoplus_{j \in J}\left(A / I_{j}\right)\right)_{p}=\bigoplus_{j \in J}\left(A / I_{j}\right)_{p} \subseteq 0
$$

if and only if $\left(A / I_{j}\right)_{p} \subseteq 0$ for all $j \in J$, which happens if and only if $p \in V_{j}$ for all $j \in J$, which happens if and only if $p \in \bigcap_{j \in J} V_{j}$.

