Commutative Algebra HW4p1

Toby Aldape, Bob Kuo, Connor Meredith

November 2020

Let $L, N \leq M$ be A-modules. Let U be the set of primes for which $L_p \subseteq N_p$ holds. Show that U is an intersection of open sets in Spec(A). Show conversely that if V is any intersection of open sets in Spec(A) then V is exactly the set of primes for which $L_p \subseteq N_p$ holds for some submodules L, N of some module M.

Proof. First, suppose that L and N are submodules of the module M. Then suppose $q \subseteq p$ are primes of A and $L_p \subseteq N_p$. Then

$$L_q = (p \setminus q)^{-1} (L_p) \subseteq (p \setminus q)^{-1} N_p = N_q.$$

It follows that the collection U for which the inequality holds is downward closed when ordered by inclusion. Then the collection of primes $\text{Spec}(A) \setminus U$ for which the inequality fails must be upward closed. Therefore

$$\operatorname{Spec}(A) \setminus U = \bigcup_{p \in \operatorname{Spec}(A) \setminus U} V(p),$$

showing that $\operatorname{Spec}(A) \setminus U$ is a union of closed sets. Therefore its complement U is the intersection of open sets.

First we prove the converse direction when V is some open set. So let $V \subseteq \text{Spec}(A)$ be open. Then Spec $(A)\setminus V$ is closed. There must be some ideal $I \trianglelefteq A$ such that $\text{Spec}(A)\setminus V = V(I)$ Let L, M = A/I and let N = 0, the zero submodule. These are all A-modules/submodules. Then $(A/I)_p = L_p \subseteq N_p = 0$ if and only if for all $a + I \in A/I$ there is some $t \in A \setminus p$ such that t(a + I) = 0 + I.

If this holds, then given $1 + I \in A/I$ there must be $t \in A \setminus p$ such that t + I = t(1 + I) = 0 + I, so that $t \in I$. In other words, we must have $(A \setminus p) \cap I \neq \emptyset$, which is equivalent to $I \not\subseteq p$. Conversely, suppose that $I \not\subseteq p$. Then there must be $t \in I$ such that $t \notin p$. Then given $a + I \in A/I$, we know that $ta \in I$ and t(a + I) = ta + I = 0 + I. This establishes that $(A/I)_p \subseteq 0$. Therefore $L_p \subseteq N_p$ if and only if $I \not\subseteq p$, which happens if $p \notin V(I)$, which happens if and only if $p \in U$.

Now suppose that $V = \bigcap_{j \in J} V_j$ is the intersection of some collection of open sets. Let $I_j \leq A$ be such that $V(I_j) = \operatorname{Spec}(A) \setminus U_j$. Let $L, M = \bigoplus_{j \in J} A/I_j$ and let N be the zero submodule. We have already shown that $(A/I_j)_p \subseteq 0$ if and only if $p \in V_j$. Then

$$\left(\bigoplus_{j\in J} (A/I_j)\right)_p = \bigoplus_{j\in J} (A/I_j)_p \subseteq 0$$

if and only if $(A/I_j)_p \subseteq 0$ for all $j \in J$, which happens if and only if $p \in V_j$ for all $j \in J$, which happens if and only if $p \in \bigcap_{j \in J} V_j$.