COMMUTATIVE ALGEBRA HOMEWORK 3

CHASE MEADORS, CONNOR MEREDITH, EZZEDDINE EL SAI

Problem (8). Show that if A is a flat R-module, then its character module $\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})$ is an injective R-module (the converse is also true, but you don't have to prove it).

We start with a useful but not quite immediate characterization of injective modules:

Lemma 1. Q is an injective R-module if and only if for any injection $i: S \hookrightarrow M$ and map $f: S \to Q$, f can be extended to a map $f': M \to Q$ with $f = f' \circ i$:

Proof. Given a SES starting with $0 \to S \stackrel{i}{\hookrightarrow} M$, we need only check exactness at the right end of the image under $\operatorname{Hom}(-, Q)$, which is $\operatorname{Hom}(M, Q) \stackrel{-\circ i}{\longrightarrow} \operatorname{Hom}(S, Q) \to 0$; that is, that $-\circ i$ is surjective. This precisely means that every map $S \to Q$ can be extended through the injection i to a map $M \to Q$.

Corollary. Q is an injective R-module if and only if any map $I \to Q$ from an ideal I of R extends to a map $R \to Q$.

Proof. By Baer's criterion, we need only check that Hom(-, Q) is exact on a SES of the form $0 \to I \to R \to R/I \to 0$; apply the previous lemma to such a sequence. \Box

Lemma 2. \mathbb{Q}/\mathbb{Z} is a injective \mathbb{Z} -module.

Proof. By the last two results, we only need to check that a map $f : n\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ extends to a map $f' : \mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$. Indeed, define f' by taking 1 to f(n)/n. \Box

Claim (Problem 8). If A is a flat R-module, then its character module is injective.

Proof. By lemma 1, we need to ensure that the following diagram can be completed for any injection $i: S \hookrightarrow M$ and $f: S \to \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})$:

The most general form of the tensor hom adjunction gives a natural isomorphism:

$$(*) \qquad \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}A_R \otimes_R {}_RX_{\mathbb{Z}}, \mathbb{Z}\mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_R({}_RX_{\mathbb{Z}}, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}A_R, \mathbb{Z}\mathbb{Q}/\mathbb{Z}))$$

Every module has a \mathbb{Z} -module on either side, so S and M have the appropriate module structures to play the role of X in this isomorphism. The map f lives on the right-hand side of (*). Thus, applying this natural isomorphism to the whole diagram yields:

where \overline{f} denotes the adjunct of f under the the natural isomorphism; both \overline{f} and the yet-undefined map g live on the left side of (*) while the left map is the image of i under $A \otimes_R -$. We are assured that the left map is an injection since A is flat (hence $A \otimes_R -$ is exact and maps injections to injections). By 2, \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module. Thus, we may lift the map \overline{f} to the indicated map $g \in \operatorname{Hom}_{\mathbb{Z}}(A \otimes_R M, \mathbb{Q}/\mathbb{Z})$ that completes the triangle. Then the adjunct $\overline{g} \in \operatorname{Hom}_R(M, \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z}))$ of g completes the original triangle: indeed, naturality guarantees that $f = \overline{g \circ i \otimes_{\mathbb{Z}} A} = \overline{g} \circ i$.