We say a module M is finitely generated if there exists surjective homomorphism $\oplus^{k} R \rightarrow M$ for some positive integer k.

Lemma 0.1. Suppose that $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of modules. Assume A and C are finitely generated so that you have the diagram below.

Then B is finitely generated. In particular, if there are surjections $\oplus^{m} R \rightarrow A$ and $\oplus^{n} R \rightarrow C$, then there exists a surjection $\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right) \rightarrow B$ such that the following diagram commutes and the two rows are exact.

where μ is inclusion in the first coordinate and η is projection of the second coordinate.
Proof. Assume A and C are both finitely generated. Then we have surjective homomorphisms $\oplus^{m} R \rightarrow A$ and $\oplus^{n} R \rightarrow C$. Then we have most of the diagram in the lemma, only missing $\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right)$ and the arrows coming in and out of it.

We have $\gamma \circ \pi_{A}: \oplus^{m} R \rightarrow B$. Also, $\oplus^{n} R$ is a free module and in particular a projective module. By exactness, we have that δ is a surjective map. Then by projective lifting property we have a homomorphism $\tilde{\pi_{C}}: \oplus^{n} R \rightarrow B$. These two maps, $\gamma \circ \pi$ and $\tilde{\pi_{C}}$ induce a map from the coproduct $\pi_{B}:\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right) \rightarrow B$ defined by $(x, y) \mapsto \gamma \circ \pi_{A}(x)+\tilde{\pi_{C}}(y)$. We must show surjectivity next.

Take $b \in B . \delta(b) \in C$ so by surjectivity of π_{C} there must exist some $y \in \oplus^{n} R$ such that $\pi_{C}(y)=\delta(b)$. By construction, $\delta \circ \tilde{\pi_{C}}(y)=\pi_{C}(y)$. So $b-\tilde{\pi_{C}}(y) \in \operatorname{ker}(\delta)$. By exactness, $b-\pi_{C}(y) \in \operatorname{Im}(\gamma)$. The map π_{\sim} is also surjective, so we have $b-\pi_{C}(y) \in \operatorname{Im}\left(\gamma \circ \pi_{A}\right)$. Written out, for some $x \in \oplus^{m} R, b-\pi_{C}(y)=\gamma \circ \pi_{A}(x)$, or equivalently $\left.b=\gamma \circ \pi_{A}(x)+\pi_{C} \tilde{(} y\right)=\pi_{B}(x, y)$.

Now to show that the top row is exact, (the bottom one is exact by assumption). η is surjective since for any $y \in \oplus^{n} R$, we have $\eta(0, y)=y$. So $\operatorname{ker}(0)=\operatorname{Im}(\eta)=\oplus^{n} R$. We also have that $(x, y) \in \operatorname{ker}(\eta)$, then $y=0$ and $\mu(x)=(x, y)$. If $(x, y) \in \operatorname{Im}(\mu)$, then $y=0$ and $\eta(x, y)=y=0$. So we have that $\operatorname{Im}(\mu)=\operatorname{ker}(\eta)$. Lastly, μ is injective because if $\mu(x)=\mu(y)$ then $(x, 0)=(y, 0)$ which only happens if $x=y . \operatorname{So~} \operatorname{Im}(0)=\operatorname{ker}(\mu)=0$.

Now we show that the diagram commutes. Let $x \in \oplus^{m} R$. We know that $\pi_{B}(\mu(x))=$ $\pi_{B}(x, 0)=\gamma \circ \pi_{A}(x)+0=\gamma \circ \pi_{A}(x)$, so the first square is commutative. Now consider $(x, y) \in\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right)$. We know that $\delta\left(\pi_{B}(x, y)\right)=\delta\left(\gamma\left(\pi_{A}(x)\right)+\tilde{\pi}_{C}(y)\right)=$ $\delta\left(\gamma\left(\pi_{A}(x)\right)\right)+\delta\left(\tilde{\pi}_{C}(y)\right)=\delta\left(\tilde{\pi}_{C}(y)\right)$ since the image of γ is contained in the kernel of δ. Also, $\pi_{C}(\eta(x, y))=\pi_{C}(y)=\delta\left(\tilde{\pi}_{C}(y)\right)$, so the second square is commutative.
7. An R-module M is finitely presentable iff there is an exact sequence

$$
\oplus^{n} R \xrightarrow{\alpha} \oplus^{m} R \xrightarrow{\beta} M \rightarrow 0
$$

Show that if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of modules and if A and C are finitely presentable, then so is B.

Proof. Assume A and C are finitely presentable. Then we have the following diagram.

By the lemma, we have that there exists a surjective $\beta_{B}:\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right) \rightarrow B$. It is enough to show that this map has finitely generated kernel, for then we can construct a surjective map $\oplus^{k} R \rightarrow \operatorname{ker}\left(\beta_{B}\right)$.
The Snake Lemma can be applied as can be seen by the following diagram.

We then have an exact sequence $0 \rightarrow \operatorname{ker} \beta_{A} \rightarrow \operatorname{ker} \beta_{B} \rightarrow \operatorname{ker} \beta_{C} \rightarrow 0 . \beta_{A}$ is surjective and that is why we have a 0 in place of its cokernel. $\operatorname{ker} \beta_{A} \rightarrow \operatorname{ker} \beta_{B}$ is injective because the coprojection map $\oplus^{m} R \rightarrow\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right)$ is injective.

Since the image of α_{X} equals the kernel of β_{X} for $X \in\{A, C\}$, we obtain the following diagram, where the vertical arrows are surjective.

This is the assumption of our lemma, so we obtain a surjection from $\left(\oplus^{p} R\right) \oplus\left(\oplus^{q} R\right)$ onto ker β_{B}. That is we have a map $\alpha_{B}:\left(\oplus^{p} R\right) \oplus\left(\oplus^{q} R\right) \rightarrow\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right)$ and $\operatorname{Im} \alpha_{B}=\operatorname{ker} \beta_{B}$. We then have the exact sequence $\left(\oplus^{p} R\right) \oplus\left(\oplus^{q} R\right) \rightarrow\left(\oplus^{m} R\right) \oplus\left(\oplus^{n} R\right) \rightarrow B \rightarrow 0$. We have that B is finitely presentable.

