Homework 3 Problem 6

Toby Aldape, Michael Levet, Adrian Neff

October 2020

Suppose that

 $0 \to \operatorname{Hom}(C,M) \xrightarrow{\circ \psi} \operatorname{Hom}(B,M) \xrightarrow{\circ \phi} \operatorname{Hom}(A,M) \to 0$

is exact for every R-module M. Show that

$$A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

is exact. (Hint: Consider what happens when $M = C/\text{im } \psi$, M = C and $M = B/\text{im } \phi$.)

Proof. Let $M = C/\text{im } \psi$. Then the sequence

$$0 \to \operatorname{Hom}(C, C/\operatorname{im} \psi) \xrightarrow{\circ \psi} \operatorname{Hom}(B, C/\operatorname{im} \psi)$$

is exact and the $\circ\psi$ map is injective. Let π_{ψ} be the quotient map $\pi : C \to C/\text{im }\psi$. Then $0, \pi_{\psi} \in \text{Hom}(C, C/\text{im }\psi)$. But $0 \circ \psi = 0 = \pi_{\psi} \circ \psi$. The injectivity of the $\circ\psi$ map shows $0 = \pi_{\psi}$. Since $\pi_{\psi} : C \to C/\text{im }\psi$ is a quotient map, this shows that im $\psi = C$. Therefore ψ is surjective.

Now let M = C. We have that the sequence

$$\operatorname{Hom}(C,C) \xrightarrow{\circ\psi} \operatorname{Hom}(B,C) \xrightarrow{\circ\phi} \operatorname{Hom}(A,C)$$

is exact. Since $\operatorname{Id}_C \in \operatorname{Hom}(C, C)$, it follows that $0 = \operatorname{Id}_C \circ \psi \circ \phi = \psi \circ \phi$. Therefore im $\phi \subseteq \ker \psi$. Now, it suffices to show that ker $\psi \subseteq \operatorname{im} \phi$. To do this, let $M = B/\operatorname{im} \phi$. The sequence

$$\operatorname{Hom}(C, B/\operatorname{im} \phi) \xrightarrow{\circ \psi} \operatorname{Hom}(B, B/\operatorname{im} \phi) \xrightarrow{\circ \phi} \operatorname{Hom}(A, B/\operatorname{im} \phi)$$

is exact. Let $\pi_{\phi} : B \to B/\text{im } \phi$ be the quotient map. Then $\pi_{\phi} \in \text{Hom}(B, B/\text{im } \phi)$ and $\pi_{\phi} \circ \phi = 0$, therefore π_{ϕ} is in the kernel of the $\circ \phi$ map and thus is in the image of the $\circ \psi$ map. Then, for some $\chi \in \text{Hom}(C, B/\text{im } \phi)$, we have $\chi \circ \psi = \pi_{\phi}$, so ker $\psi \subseteq \text{ker } \pi_{\phi} = \text{im } \phi$.