5. Let $\phi: R \rightarrow S$ be a ring homomorphism. Show that the functor of extension of scalars from R-Mod to S-Mod induces a commutative semi-ring homomorphism from $\langle R$ $\operatorname{Mod} ; \otimes, \oplus, 0, R\rangle \cong\langle S$-Mod; $\otimes, \oplus, 0, S\rangle / \cong$.

Proof. We need to prove that the map induced by the extension of scalars functor, $E: R$ Mod $\rightarrow S$-Mod, respects all the semi-ring data. Since E is a functor, it sends isomorphisms to isomorphisms, so, it's sufficient to work with class representatives and show that the data is preserved up to isomorphism.

As a matter of notation, $S \otimes_{R} A$ denotes the tensor product in R (where S is given the restriction of scalars structure), meanwhile, $\overline{S \otimes_{R} A}$ is the S-Module with the action s^{\prime}. $(s \otimes a)=s^{\prime} s \otimes a$. The construction $S \otimes_{R} A \mapsto \overline{S \otimes_{R} A}$ is a functor from the subcategory $\operatorname{Im}\left(S \otimes_{R}\right) \leq S$-Mod to S-Mod.

The Multiplicative Unit:

$E(A)=\overline{S \otimes_{R} A}$, therefore, $E(R)=\overline{S \otimes_{R} R}$ and since $S \otimes_{R} R \cong S$, we have $\overline{S \otimes_{R} R} \cong \bar{S}$. But S acts on \bar{S} by ring multiplication, therefore, $\bar{S} \cong S$.

Multiplication:
$\overline{S \otimes_{R}\left(A \otimes_{R} B\right)}$ is S-isomorphic to $\overline{\left(S \otimes_{R}\left(A \otimes_{R} B\right)\right)} \otimes_{S} S$, so we need an S-isomorphism between this module and $\overline{\left(S \otimes_{R} A\right)} \otimes_{S} \overline{\left(S \otimes_{R} B\right)}$. Define ϕ on simple tensors $(s \otimes(a \otimes b)) \otimes$ $s^{\prime} \mapsto(s \otimes a) \otimes\left(s^{\prime} \otimes b\right)$ and extend by linearity. With the obvious inverse, ϕ is an S-linear isomorphism.

Addition:

$S \otimes_{R}(A \oplus B) \cong\left(S \otimes_{R} A\right) \oplus\left(S \otimes_{R} B\right)$ as R-modules. This isomorphism is given explicitly by $\phi: s \otimes(a, b) \mapsto(s \otimes a, s \otimes b)$. We can check the compatibility of the \mathbb{Z}-Mod isomoprhism ϕ with the S action:

$$
\phi\left(s^{\prime} \cdot(s \otimes(a, b))\right)=\phi\left(\left(s^{\prime} s\right) \otimes(a, b)\right)=\left(s^{\prime} s \otimes a, s^{\prime} s \otimes b\right)=s^{\prime}(s \otimes a, s \otimes b)=s^{\prime} \phi(s \otimes(a, b))
$$

So if we give $\left(S \otimes_{R} A\right) \oplus\left(S \otimes_{R} B\right)$ the S-structure $\overline{\left(S \otimes_{R} A\right)} \oplus \overline{\left(S \otimes_{R} B\right)}$, we have that the \mathbb{Z}-isomorphism ϕ is also an S-isomorphism $\overline{S \otimes_{R}(A \oplus B)} \rightarrow \overline{\left(S \otimes_{R} A\right)} \oplus \overline{\left(S \otimes_{R} B\right)}$

The Additive Identity:

$E(0)=\overline{S \otimes_{R} 0}$ but $S \otimes_{R} 0 \cong 0$ and $\overline{0}$ is the 0 module in S-Mod.

