4. (There is no contravariant analogue of the tensor product)
(a) Let k-Vec denote the category of vector spaces over the field k. Show that the double dual functor $V \mapsto V^{* *}$ is an additive covariant functor that is not representable.
(b) A contravariant version of the tensor product, say $B \boxtimes_{R} C$, might be expected to satisfy the property that it represents the composite of the contravariant representable functors $\operatorname{Hom}_{R}(-, B)$ and $\operatorname{Hom}_{R}(-, C)$. Show that there is no such general construction for categories of modules.

Proof.

(a) First we will show that the assignment $(-)^{* *}: k$-Vec $\rightarrow k$-Vec is indeed a covariant functor. Let $f: V \rightarrow W$ be a linear map. Note that $f^{* *}: V^{* *} \rightarrow W^{* *}$ must take some $\Phi \in V^{* *}$, hence a $\Phi: V^{*} \rightarrow k$, and produce an element $f^{* *} \Phi \in W^{* *}$, that is $f^{* *} \Phi: W^{*} \rightarrow k$. Note that if $w \in W^{*}$, that is if $w: W \rightarrow k$ is a linear map, then $w \circ f$ is a linear map $V \rightarrow k$, hence $w \circ f \in V^{*}$. So, we can define

$$
\left(f^{* *} \Phi\right)(w)=\Phi(w \circ f)
$$

To see that this covariant assignment is a functor, we must show preservation of identity morphisms and composition. For the identity morphism $\operatorname{id}_{V}: V \rightarrow V$ for some vector space V, the map $\mathrm{id}_{V}^{* *}: V^{* *} \rightarrow V^{* *}$ acts by mapping a $\Phi: V^{*} \rightarrow k$ to the map $\left(\operatorname{id}_{V}^{* *} \Phi\right): V^{*} \rightarrow k$. By the definition given above and the fact that $w \circ \mathrm{id}_{V}=w$ for all $w: V \rightarrow k$,

$$
\left(\mathrm{id}_{V}^{* *} \Phi\right)(w)=\Phi\left(w \circ \mathrm{id}_{V}\right)=\Phi(w)
$$

so that $\mathrm{id}_{V}^{* *}=\mathrm{id}_{V^{* *}}$. To show composition, let $g: U \rightarrow V$ be another linear map for some $U \in k$-Vec. We must show that $(f \circ g)^{* *}=f^{* *} \circ g^{* *}$. Let $\Phi \in U^{* *}, w \in W^{*}$ Then

$$
\left((f \circ g)^{* *} \Phi\right)(w)=\Phi(w \circ(f \circ g)) .
$$

As $w \circ(f \circ g)=(w \circ f) \circ g$, we have then that

$$
\begin{aligned}
\Phi(w \circ(f \circ g)) & =\Phi((w \circ f) \circ g) \\
& =\left(g^{* *} \Phi\right)(w \circ f) \\
& =\left(f^{* *}\left(g^{* *} \Phi\right)\right)(w) \\
& =\left(\left(f^{* *} \circ g^{* *}\right) \Phi\right)(w) .
\end{aligned}
$$

Thus, we have that $(f \circ g)^{* *}=f^{* *} \circ g^{* *}$ so that the double dual is indeed a functor.
To see that this functor is additive, we must show that it preserves finite biproducts. That it preserves the zero object 0 (i.e., the nullary biproduct) follows from observing that $0^{*}=\operatorname{Hom}(0, k) \cong 0$ as there is only the one unique linear map $0 \rightarrow k$, hence $0^{* *}=\left(0^{*}\right)^{*} \cong 0^{*} \cong 0$. For a binary biproduct $V \oplus W$, consider

$$
(V \oplus W)^{* *}=\operatorname{Hom}(\operatorname{Hom}(V \oplus W, k), k)
$$

Since biproduct is in particular a coproduct, we have then that this naturally isomorphic to

$$
\operatorname{Hom}(\operatorname{Hom}(V, k) \times \operatorname{Hom}(W, k), k)
$$

But then, the product \times is again actually the biproduct \oplus, hence is also a coproduct, so we have a natural isomorphism with

$$
\operatorname{Hom}(\operatorname{Hom}(V, k), k) \times \operatorname{Hom}(\operatorname{Hom}(W, k), k) \cong V^{* *} \oplus W^{* *}
$$

So, the double dual functor is additive.
However, the double dual functor is not representable. If there were some representing object, say some vector space A such that $V^{* *} \cong \operatorname{Hom}(A, V)$ for all $V \in k$-Vec, then we must have the dimensions are equal, i.e. that $\operatorname{dim}\left(V^{* *}\right)=\operatorname{dim}(\operatorname{Hom}(A, V))$ for all V. But this cannot generally be the case.
To see this, recall that if V is finite dimensional, then $V^{*} \cong V$ and we have $\operatorname{dim}\left(V^{* *}\right)=$ $\operatorname{dim}(V)$. This implies that the representing object A should have dimension 1 , so that $\operatorname{dim}(\operatorname{Hom}(A, V))=\operatorname{dim}(A) \operatorname{dim}(V)=\operatorname{dim}\left(V^{* *}\right)=\operatorname{dim}(V)$. However, when the dimension of V is infinite, $\operatorname{dim}\left(V^{*}\right)$ is strictly greater than $\operatorname{dim}(V)$, implying that the representing object should have dimension higher than 1, a contradiction. Hence, no such representing object for the double dual functor can exist.
(b) Consider the case where $R=k$ a field and $B=C=k$ as a k vector space. Then $\operatorname{Hom}_{k}\left(\operatorname{Hom}_{k}(-, k), k\right)=(-)^{* *}$. Hence, if this composite functor were representable we would have a representing object for the double dual, and by part (a) the double dual functor is not representable. Hence, there can be no analogous contravariant tensor product for k-Vec and hence no such construction for categories of R modules in general.

