Commutative Algebra- HW3

Toby Adalpe, Michael Levet, Adrian Neff

Problem 3. Let m be an integer that is not a perfect square.
(a) Show that $\mathbb{Q}[\sqrt{m}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt{m}] \cong \mathbb{Q}[\sqrt{m}] \times \mathbb{Q}[\sqrt{m}]$ as \mathbb{Q}-algebras.
(b) Find the idempotents in $\mathbb{Q}[\sqrt{m}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt{m}]$ that induce the direct decomposition in (a).
(c) Find an idempotent $e \neq 0,1$ in $\mathbb{Q}[\sqrt[3]{2}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt[3]{2}]$.

Definition 1. Let $n \in \mathbb{Z}^{+}$. Denote $[n]:=\{1,2, \ldots, n\}$.
Theorem 2. Let K / k be a Galois extension of finite degree n. Then $K \otimes_{k} K \cong K^{n}$, as k-algebras.
Proof. As K / k is a Galois extension of finite degree n, there exists a k-irreducible polynomial $f(x) \in k[x]$ such that $K \cong k[x] /(f(x))$. By calg3p2, we have that:

$$
k[x] /(f(x)) \otimes_{k} K \cong K[x] /(f(x)) .
$$

Now as K is a splitting field for $f(x)$, we may write $f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{n}\right) \in K[x]$, for distinct $a_{1}, \ldots, a_{n} \in$ K. We have that:

$$
\begin{align*}
K[x] /(f(x)) & \cong \prod_{i=1}^{n} K[x] /\left(x-a_{i}\right) \tag{1}\\
& \cong \prod_{i=1}^{n} K \cong K^{n} . \tag{2}
\end{align*}
$$

Here, (1) follows from the Chinese Remainder Theorem and the fact that K is a splitting field for $f(x)$. The result follows.
Corollary 3. $\mathbb{Q}[\sqrt{m}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt{m}] \cong \mathbb{Q}[\sqrt{m}] \times \mathbb{Q}[\sqrt{m}]$ as \mathbb{Q}-algebras.
Proof. We apply Theorem 2 with $K=\mathbb{Q}[\sqrt{m}]$ and $k=\mathbb{Q}$. The result follows.
Remark 4. Let K / k be a Galois extension of finite degree n, and let $f(x) \in k[x]$ be a k-irreducible polynomial realizing $k[x] /(f(x)) \cong K$. We construct an explicit isomorphism realizing $K[x] /(f(x)) \cong k[x] /(f(x)) \otimes_{k} K$. Let $\varphi: K[x] \rightarrow k[x] /(f(x)) \otimes_{k} K$ by the k-algebra homomorphism, which is determined by $\varphi(c)=1 \otimes_{k} c$ if $c \in K$ and $\varphi(x)=x \otimes_{k} 1$. We note that $k[x] /(f(x))$ has a basis $\left\{\overline{1}, \bar{x}, \ldots, \overline{x^{n-1}}\right\}$, and let $\left\{b_{1}, \ldots, b_{n}\right\}$ be a k-basis for K. So $k[x] /(f(x)) \otimes_{k} K$ is generated by:

$$
\left\{\overline{x^{i}} \otimes_{k} b_{j}: i \in[n-1] \cup\{0\}, j \in[n]\right\} .
$$

Observe that for each $i \in[n-1] \cup\{0\}$ and each $j \in[n]$:

$$
\begin{aligned}
\varphi\left(b_{j} x^{i}\right) & =\varphi\left(b_{j}\right) \varphi\left(x^{i}\right) \\
& =\left(1 \otimes_{k} b_{j}\right) \cdot\left(\overline{x^{i}} \otimes_{k} 1\right) \\
& =\left(\overline{x^{i}} \otimes_{k} b_{j}\right) .
\end{aligned}
$$

So φ is surjective. Now observe that $\operatorname{ker}(\varphi)$ contains $f(x)$, and so $(f(x)) \subset \operatorname{ker}(\varphi)$. We now show that $\operatorname{ker}(\varphi) \subset(f(x))$. Let $p(x) \in \operatorname{ker}(\varphi)$. By the division algorithm, we may write $p(x)=f(x) \cdot q(x)+r(x)$ for some $q(x), r(x) \in K[x]$ where $\operatorname{deg}(r(x))<\operatorname{deg}(f(x))=n$. As φ is a k-algebra homomorphism, we have that:

$$
\begin{aligned}
\varphi(p(x)) & =\varphi(f(x) \cdot q(x)+r(x)) \\
& =\varphi(f(x)) \cdot \varphi(q(x))+\varphi(r(x)) \\
& =0 \cdot \varphi(q(x))+\varphi(r(x)) \\
& =\varphi(r(x)) .
\end{aligned}
$$

As $\operatorname{deg}(r(x))<\operatorname{deg}(f(x))=n$, we have that $\varphi(r(x))=0$ if and only if $r(x)=0$. Thus, $\operatorname{ker}(\varphi) \subset(f(x))$. And so we conclude that $\operatorname{ker}(\varphi)=(f(x))$. Thus, the induced map $\bar{\varphi}: K[x] /(f(x)) \rightarrow k[x] /(f(x)) \otimes_{k} K$ is a well-defined isomorphism.

Remark 5. Let R_{1}, \ldots, R_{n} be commutative, unital rings, and let:

$$
R=\prod_{i=1}^{n} R_{i}
$$

We observe that for each $i \in[n], e_{i} \in R$ (the element where all coordinates are 0 , except for the i th coordinate which is 1) is an idempotent. Clearly, $e_{i}^{2}=e_{i}$. Furthermore, observe that $e_{i} R \cong R_{i}$.

In the setting of Theorem 2 where we have $k[x] / f(x) \otimes_{k} K \cong K^{n}$, the standard basis vectors $e_{1}, \ldots, e_{n} \in K^{n}$ are the desired idempotents, whose preimages in $k[x] / f(x) \otimes_{k} K$ induce the direct decomposition. By the Chinese Remainder Theorem, there exist polynomials $p_{1}, \ldots, p_{n} \in K[x]$ where $p_{i}\left(a_{j}\right)=\delta_{i j}$. Denote $\overline{p_{i}}$ to be the projection of p_{i} in $K[x] /(f(x))$. The map $\overline{p_{i}} \mapsto e_{i}$ induces a k-algebra isomorphism of $K[x] /(f(x)) \cong K^{n}$. The preimages of the $\overline{p_{i}}$ in $k[x] / f(x) \otimes_{k} K$ are the desired idempotents.
Example 6. We first compute the idempotents in $\mathbb{Q}[\sqrt{m}] \otimes_{\mathbb{Q}} \mathbb{Q}[\sqrt{m}]$ that induce the direct decomposition. We begin working in $\mathbb{Q}[\sqrt{m}][x] /\left(x^{2}-m\right)$. The elements of $\mathbb{Q}[\sqrt{m}][x] /\left(x^{2}-m\right)$ are of the form $\overline{a x+b}$, with the relation that $x^{2}=m$. Suppose that $\overline{a x+b} \in \mathbb{Q}[\sqrt{m}][x] /\left(x^{2}-m\right)$ is an idempotent. Considering $(\overline{a x+b})^{2}=$ $\overline{a x+b}$, we obtain the following relations:

$$
\begin{aligned}
& m a^{2}+b^{2}=b \\
& 2 a b x=a x .
\end{aligned}
$$

First consider the relation that $2 a b x=a x$. If $a \neq 0$, then $b=1 / 2$. Applying this to the first relation: $m a^{2}+b^{2}=b$, we obtain that:

$$
a= \pm \frac{1}{2 \sqrt{m}} .
$$

So the idempotents in $\mathbb{Q}[\sqrt{m}][x] /\left(x^{2}-m\right)$ are of the form:

$$
\pm \frac{1}{2 \sqrt{m}} x+\frac{1}{2} .
$$

These correspond to the following idempotents in $\mathbb{Q}[\sqrt{m}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt{m}]$:

$$
\left(1 \otimes \mathbb{Q} \frac{1}{2}\right)+\left(\sqrt{m} \otimes \mathbb{Q} \frac{1}{2 \sqrt{m}}\right) .
$$

Example 7. We compute an idempotent $e \neq 0,1$ in $\mathbb{Q}[\sqrt[3]{2}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt[3]{2}]$. We note that $1,2^{1 / 3}, 2^{2 / 3}$ are linearly independent in $\mathbb{Q}[\sqrt[3]{2}]$. So $\left\langle 1,2^{1 / 3}, 2^{2 / 3}\right\rangle$ is a \mathbb{Q}-subspace of $\mathbb{Q}[\sqrt[3]{2}]$. Furthermore, we observe the following relations:

$$
\begin{aligned}
& 1 \cdot 2^{1 / 3}=2^{1 / 3} \\
& 1 \cdot 2^{2 / 3}=2^{2 / 3} \\
& 2^{1 / 3} \cdot 2^{2 / 3}=2 \cdot 1 .
\end{aligned}
$$

So $\left\langle 1,2^{1 / 3}, 2^{2 / 3}\right\rangle$ is closed under products, and therefore also a sub-ring of $\mathbb{Q}[\sqrt[3]{2}]$. Thus, $\left\langle 1,2^{1 / 3}, 2^{2 / 3}\right\rangle$ is a sub-algebra of $\mathbb{Q}[\sqrt[3]{2}]$. For that reason, we hope that the calculations simplify. So we attempt to check whether there is an idempotent of the following form:

$$
e=a\left(1 \otimes_{\mathbb{Q}} 1\right)+b\left(2^{1 / 3} \otimes_{\mathbb{Q}} 2^{1 / 3}\right)+c\left(2^{2 / 3} \otimes 2^{2 / 3}\right) .
$$

If such an idempotent exists, then the equation $e^{2}=e$ yields the relations:

$$
\begin{aligned}
& a^{2}+8 b c=a \\
& 2 a b+4 c^{2}=b \\
& 2 a c+b^{2}=c
\end{aligned}
$$

Using a computer algebra system, we find that there are four solutions to this system of equations:

$$
\begin{aligned}
& a=b=c=0 \\
& a=1, b=c=0 \\
& a=\frac{1}{3}, b=\frac{1}{3 \cdot 2^{2 / 3}}, c=\frac{1}{6 \cdot 2^{1 / 3}} \\
& a=\frac{2}{3}, b=-\frac{1}{3 \cdot 2^{2 / 3}}, c=-\frac{1}{6 \cdot 2^{1 / 3}} .
\end{aligned}
$$

So the following elements are idempotents of $\mathbb{Q}[\sqrt[3]{2}] \otimes \mathbb{Q} \mathbb{Q}[\sqrt[3]{2}]$:

$$
\begin{aligned}
& e_{1}=\frac{1}{3}\left(1 \otimes_{\mathbb{Q}} 1\right)+\frac{1}{3 \cdot 2^{2 / 3}} \cdot\left(2^{1 / 3} \otimes_{\mathbb{Q}} 2^{1 / 3}\right)+\frac{1}{6 \cdot 2^{1 / 3}} \cdot\left(2^{2 / 3} \otimes 2^{2 / 3}\right) \text { and } \\
& e_{2}=\frac{2}{3}\left(1 \otimes_{\mathbb{Q}} 1\right)-\frac{1}{3 \cdot 2^{2 / 3}} \cdot\left(2^{1 / 3} \otimes_{\mathbb{Q}} 2^{1 / 3}\right)-\frac{1}{6 \cdot 2^{1 / 3}} \cdot\left(2^{2 / 3} \otimes 2^{2 / 3}\right) .
\end{aligned}
$$

