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Problem 3. Let m be an integer that is not a perfect square.

(a) Show that Q[
√
m]⊗Q Q[

√
m] ∼= Q[

√
m]×Q[

√
m] as Q-algebras.

(b) Find the idempotents in Q[
√
m]⊗Q Q[

√
m] that induce the direct decomposition in (a).

(c) Find an idempotent e 6= 0, 1 in Q[ 3
√

2]⊗Q Q[ 3
√

2].

Definition 1. Let n ∈ Z+. Denote [n] := {1, 2, . . . , n}.

Theorem 2. Let K/k be a Galois extension of finite degree n. Then K ⊗k K ∼= Kn, as k-algebras.

Proof. As K/k is a Galois extension of finite degree n, there exists a k-irreducible polynomial f(x) ∈ k[x] such
that K ∼= k[x]/(f(x)). By calg3p2, we have that:

k[x]/(f(x))⊗k K ∼= K[x]/(f(x)).

Now as K is a splitting field for f(x), we may write f(x) = (x−a1) · · · (x−an) ∈ K[x], for distinct a1, . . . , an ∈
K. We have that:

K[x]/(f(x)) ∼=
n∏

i=1

K[x]/(x− ai) (1)

∼=
n∏

i=1

K ∼= Kn. (2)

Here, (1) follows from the Chinese Remainder Theorem and the fact that K is a splitting field for f(x). The
result follows.

Corollary 3. Q[
√
m]⊗Q Q[

√
m] ∼= Q[

√
m]×Q[

√
m] as Q-algebras.

Proof. We apply Theorem 2 with K = Q[
√
m] and k = Q. The result follows.

Remark 4. Let K/k be a Galois extension of finite degree n, and let f(x) ∈ k[x] be a k-irreducible polynomial
realizing k[x]/(f(x)) ∼= K. We construct an explicit isomorphism realizing K[x]/(f(x)) ∼= k[x]/(f(x)) ⊗k K.
Let ϕ : K[x] → k[x]/(f(x)) ⊗k K by the k-algebra homomorphism, which is determined by ϕ(c) = 1 ⊗k c if
c ∈ K and ϕ(x) = x ⊗k 1. We note that k[x]/(f(x)) has a basis {1, x, . . . , xn−1}, and let {b1, . . . , bn} be a
k-basis for K. So k[x]/(f(x))⊗k K is generated by:

{xi ⊗k bj : i ∈ [n− 1] ∪ {0}, j ∈ [n]}.

Observe that for each i ∈ [n− 1] ∪ {0} and each j ∈ [n]:

ϕ(bjx
i) = ϕ(bj)ϕ(xi)

= (1⊗k bj) · (xi ⊗k 1)

= (xi ⊗k bj).

So ϕ is surjective. Now observe that ker(ϕ) contains f(x), and so (f(x)) ⊂ ker(ϕ). We now show that
ker(ϕ) ⊂ (f(x)). Let p(x) ∈ ker(ϕ). By the division algorithm, we may write p(x) = f(x) · q(x) + r(x) for some
q(x), r(x) ∈ K[x] where deg(r(x)) < deg(f(x)) = n. As ϕ is a k-algebra homomorphism, we have that:

ϕ(p(x)) = ϕ(f(x) · q(x) + r(x))

= ϕ(f(x)) · ϕ(q(x)) + ϕ(r(x))

= 0 · ϕ(q(x)) + ϕ(r(x))

= ϕ(r(x)).
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As deg(r(x)) < deg(f(x)) = n, we have that ϕ(r(x)) = 0 if and only if r(x) = 0. Thus, ker(ϕ) ⊂ (f(x)).
And so we conclude that ker(ϕ) = (f(x)). Thus, the induced map ϕ : K[x]/(f(x)) → k[x]/(f(x)) ⊗k K is a
well-defined isomorphism.

Remark 5. Let R1, . . . , Rn be commutative, unital rings, and let:

R =
n∏

i=1

Ri.

We observe that for each i ∈ [n], ei ∈ R (the element where all coordinates are 0, except for the ith coordinate
which is 1) is an idempotent. Clearly, e2i = ei. Furthermore, observe that eiR ∼= Ri.

In the setting of Theorem 2 where we have k[x]/f(x)⊗k K ∼= Kn, the standard basis vectors e1, . . . , en ∈ Kn

are the desired idempotents, whose preimages in k[x]/f(x) ⊗k K induce the direct decomposition. By the
Chinese Remainder Theorem, there exist polynomials p1, . . . , pn ∈ K[x] where pi(aj) = δij . Denote pi to be
the projection of pi in K[x]/(f(x)). The map pi 7→ ei induces a k-algebra isomorphism of K[x]/(f(x)) ∼= Kn.
The preimages of the pi in k[x]/f(x)⊗k K are the desired idempotents.

Example 6. We first compute the idempotents in Q[
√
m] ⊗Q Q[

√
m] that induce the direct decomposition.

We begin working in Q[
√
m][x]/(x2−m). The elements of Q[

√
m][x]/(x2−m) are of the form ax+ b, with the

relation that x2 = m. Suppose that ax+ b ∈ Q[
√
m][x]/(x2 −m) is an idempotent. Considering (ax+ b)2 =

ax+ b, we obtain the following relations:

ma2 + b2 = b

2abx = ax.

First consider the relation that 2abx = ax. If a 6= 0, then b = 1/2. Applying this to the first relation:
ma2 + b2 = b, we obtain that:

a = ± 1

2
√
m
.

So the idempotents in Q[
√
m][x]/(x2 −m) are of the form:

± 1

2
√
m
x+

1

2
.

These correspond to the following idempotents in Q[
√
m]⊗Q Q[

√
m]:(

1⊗Q
1

2

)
+

(√
m⊗Q

1

2
√
m

)
.

Example 7. We compute an idempotent e 6= 0, 1 in Q[ 3
√

2] ⊗Q Q[ 3
√

2]. We note that 1, 21/3, 22/3 are linearly
independent in Q[ 3

√
2]. So 〈1, 21/3, 22/3〉 is a Q-subspace of Q[ 3

√
2]. Furthermore, we observe the following

relations:

1 · 21/3 = 21/3

1 · 22/3 = 22/3

21/3 · 22/3 = 2 · 1.

So 〈1, 21/3, 22/3〉 is closed under products, and therefore also a sub-ring of Q[ 3
√

2]. Thus, 〈1, 21/3, 22/3〉 is a
sub-algebra of Q[ 3

√
2]. For that reason, we hope that the calculations simplify. So we attempt to check whether

there is an idempotent of the following form:

e = a(1⊗Q 1) + b(21/3 ⊗Q 21/3) + c(22/3 ⊗ 22/3).

If such an idempotent exists, then the equation e2 = e yields the relations:

a2 + 8bc = a

2ab+ 4c2 = b

2ac+ b2 = c.
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Using a computer algebra system, we find that there are four solutions to this system of equations:

a = b = c = 0

a = 1, b = c = 0

a =
1

3
, b =

1

3 · 22/3
, c =

1

6 · 21/3

a =
2

3
, b = − 1

3 · 22/3
, c = − 1

6 · 21/3
.

So the following elements are idempotents of Q[ 3
√

2]⊗Q Q[ 3
√

2] :

e1 =
1

3
(1⊗Q 1) +

1

3 · 22/3
· (21/3 ⊗Q 21/3) +

1

6 · 21/3
· (22/3 ⊗ 22/3) and

e2 =
2

3
(1⊗Q 1)− 1

3 · 22/3
· (21/3 ⊗Q 21/3)− 1

6 · 21/3
· (22/3 ⊗ 22/3).
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