2. Let \mathbb{F} be a field. Suppose that A and B are \mathbb{F}-algebras and that $B=\mathbb{F}[b]$ is generated as an \mathbb{F}-algebra by a single element $b \in B$.
(a) Show that $A \otimes_{\mathbb{F}} B \cong A[x] / \min _{b, \mathbb{F}}(x)$.
(b) Restrict now to the case where A and B are fields. Give an example where $A \otimes_{\mathbb{F}} B$ has nonzero nilpotent elements, and another example where $A \otimes_{\mathbb{F}} B$ ($\neq 0$) has no nonzero nilpotent ideals.
(a) In this proof, we show there is an invertible \mathbb{F}-algebra homomorphism from $A \otimes_{\mathbb{F}} B$ to $A[x] / \min _{b, \mathbb{F}}(x)$. To do so, we make use of the universal property of quotients and the universal property of tensor products.

Let $\pi: A[x] \rightarrow A[x] / \min _{b, \mathbb{F}}(x)$ be the canonical projection and let $\phi: A[x] \rightarrow A \otimes_{\mathbb{F}} B$ be given by

$$
\phi\left(\sum_{k=0}^{n} a_{k} x^{k}\right)=\sum_{k=0}^{n} a_{k} \otimes b^{k}
$$

In order to appeal to the universal property of quotients, we perform a quick computation. Let $f_{0}, \ldots, f_{k} \in \mathbb{F}$ such that $\min _{b, \mathbb{F}}(x)=\sum_{k=0}^{n} f_{k} x^{k}$. Then:

$$
\begin{array}{rlr}
\phi\left(\min _{b, \mathbb{F}}(x)\right) & =\phi\left(\sum_{k=0}^{n} f_{k} x^{k}\right) & \\
& =\sum_{k=0}^{n} f_{k} \otimes b^{k} & \quad \text { (Def. of } \phi) \\
& =\sum_{k=0}^{n} 1 \otimes f_{k} b^{k} & \\
& =1 \otimes \sum_{k=0}^{n} f_{k} b^{k} & \\
& =1 \otimes \min _{b, \mathbb{F}}(b) \\
& =1 \otimes 0 \\
& =0 & \text { (Bilinearity of } \otimes) \\
\end{array}
$$

Thus, $\left(\min _{b, \mathbb{F}}(x)\right) \subseteq \operatorname{ker}(\phi)$, so by the universal property of quotients, there is an \mathbb{F}-module homomorphism $\bar{\phi}: A[x] / \min _{b, \mathbb{F}}(x) \rightarrow A \otimes_{\mathbb{F}} B$ such that $\bar{\phi} \circ \pi=\phi$.

Now consider the map $s: A \times B \rightarrow A[x]$ determined by $s\left(a, b^{k}\right)=a x^{k}$ (not every element of B is of the form b^{k}, but we extend this to an \mathbb{F}-algebra homomorphism). Define $\varphi=\pi \circ s$.

In order to appeal to the universal property of tensor products, observe that φ is bilinear since s is bilinear (by def. of $A[x]$) and π is linear. Let $\iota: A \times B \rightarrow A \otimes_{\mathbb{F}} B$ be the standard insertion of generators. By the universal property of tensor products, there is an \mathbb{F}-algebra homomorphism $\bar{\varphi}: A \otimes_{\mathbb{F}} B \rightarrow A[x] / \min _{b, \mathbb{F}}(x)$ such that $\bar{\varphi} \circ \iota=\varphi$.

All necessary maps are now defined so we will now show that $\bar{\varphi}$ and $\bar{\phi}$ are inverses. For this purpose, it suffices to show that $\bar{\varphi}$ is surjective and that $\bar{\phi} \circ \bar{\varphi}=i d_{A \otimes_{\mathbb{F}} B}$. This suffices for two reasons. First, every left invertible function is injective, so a left invertible surjection is a bijection. Second, a left inverse of a bijective function is a full inverse.

To see that $\bar{\varphi}$ is surjective, consider $\left.\bar{\varphi}\right|_{\mathrm{im}(\imath)}$. According to our definitions, we have

$$
\operatorname{im}\left(\left.\bar{\varphi}\right|_{\operatorname{im}(\iota)}\right)=\operatorname{im}(\bar{\varphi} \circ \iota)=\operatorname{im}(\varphi)=\operatorname{im}(\pi \circ s)
$$

Since π is surjective, we need only show that s is surjective. However, this is immediate since for any $\sum_{k=0}^{n} a_{k} x^{k} \in A[x]$, the definition of s yields

$$
s\left(\sum_{k=0}^{n} a_{k} b^{k}\right)=\sum_{k=0}^{n} s\left(a_{k} b^{k}\right)=\sum_{k=0}^{n} a_{k} x^{k}
$$

Hence, $\bar{\varphi}$ is surjective.
To see that $\bar{\phi} \circ \bar{\varphi}=i d_{A \otimes_{\mathbb{F}} B}$, first consider $\bar{\phi} \circ \bar{\varphi} \circ \iota$. By our definitions, we have

$$
\bar{\phi} \circ \bar{\varphi} \circ \iota=\bar{\phi} \circ \varphi=\bar{\phi} \circ \pi \circ s=\phi \circ s
$$

We will now show that $\phi \circ s=\iota$. Since $\phi \circ s$ is an \mathbb{F}-algebra homomorphism, it suffices to show that for all $a \in A$ and $k \in \mathbb{N},(\phi \circ s)\left(a, b^{k}\right)=a \otimes b^{k}$. Again, this follows directly from the definition of ϕ and $s:(\phi \circ \iota)\left(a, b^{k}\right)=\phi\left(a x^{k}\right)=a \otimes b^{k}=\iota\left(a, b^{k}\right)$. Therefore, $\bar{\phi} \circ \bar{\varphi} \circ \iota=\iota$. We then have that for any simple tensor $a \otimes b^{k} \in A \otimes_{\mathbb{F}} B,(\bar{\phi} \circ \bar{\varphi})\left(a \otimes b^{k}\right)=(\bar{\phi} \circ \bar{\varphi} \circ \iota)\left(a, b^{k}\right)=$ $\iota\left(a, b^{k}\right)=a \otimes b^{k}$. Such tensors form a basis for $A \otimes_{\mathbb{F}} B$, so $\bar{\phi} \circ \bar{\varphi}=i d_{A \otimes_{\mathbb{F}} B}$.

By our previous discussion, we conclude that $\bar{\varphi}$ is an invertible \mathbb{F}-algebra homomorphism, so $A \otimes_{\mathbb{F}} B \cong A[x] / \min _{b, \mathbb{F}}(x)$.
(b) Let \mathbb{F} be any transcendental simple extension of \mathbb{F}_{2}, say $\mathbb{F}=\mathbb{F}_{2}(t)$. The polynomial $x^{2}-t$ is irreducible over \mathbb{F} (since $\sqrt{t} \notin \mathbb{F}$) and is monic, so $\min _{\sqrt{t}, \mathbb{F}}(x)=x^{2}-t$. By part (a), we therefore have

$$
\mathbb{F}(\sqrt{t}) \otimes_{\mathbb{F}} \mathbb{F}(\sqrt{t}) \cong \mathbb{F}(\sqrt{t})[x] /\left(x^{2}-t\right)
$$

But $x^{2}-t$ is reducible over $\mathbb{F}(\sqrt{t})$! In particular, since \mathbb{F} has characteristic $2,(x-\sqrt{t})^{2}=$ $x^{2}-2 x \sqrt{t}+t=x^{2}-t$, so we actually have

$$
\mathbb{F}(\sqrt{t}) \otimes_{\mathbb{F}} \mathbb{F}(\sqrt{t}) \cong \mathbb{F}(t)[x] /(x-\sqrt{t})^{2}
$$

$\mathbb{F}(t)[x] /(x-\sqrt{t})^{2}$ has nonzero element $x-\sqrt{t}$ which squares to zero, so we are done with the first example.

Consider \mathbb{Q} as a \mathbb{Q}-algebra under its usual ring structure and \mathbb{Q}-action given by multiplication. Then $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ (is isomorphic to \mathbb{Q} since generally $R \otimes_{R} S \cong S$, but let's use part (a)) is isomorphic to $\mathbb{Q}[x] / \min _{1, \mathbb{Q}}(x)$ since \mathbb{Q} is generated as a \mathbb{Q}-algebra by 1 . Since $1 \in \mathbb{Q}$, this extension is trivial and we arrive at $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q} \cong \mathbb{Q}$. Since \mathbb{Q} has no nonzero nilpotent elements and is itself nonzero, we are done.

