Commutative Algebra Chase Meadors
Assignment 3 Connor Meredith
Problem 2 Ezzeddine El Sai

2. Let F be a field. Suppose that A and B are F-algebras and that B = F[}] is
generated as an F-algebra by a single element b € B.

(a) Show that A ®r B = Alz]/min,g(z).

(b) Restrict now to the case where A and B are fields. Give an example where
A ®r B has nonzero nilpotent elements, and another example where A ®p B
(# 0) has no nonzero nilpotent ideals.

(a) In this proof, we show there is an invertible F-algebra homomorphism from A ®p B
to Alx]/min,r(z). To do so, we make use of the universal property of quotients and the
universal property of tensor products.

Let 7 : Alx] — Alz]/min,g(z) be the canonical projection and let ¢ : A[z] - A ®p B be

given by
10) (Z akxk> = Zak ® b

k=0 k=0

In order to appeal to the universal property of quotients, we perform a quick computation.
Let fo, ..., fr € F such that min,p(z) = Y p_, fra®. Then:

p(mingp(z)) = ¢ (Z fkmk>
k=0
— Zn: fr @ " (Def. of ¢)
k=0
=Y 1@ fib (fx €F)
k=0

=1® Z fub" (Bilinearity of ®)
k=0

=1® minb’lg(b)
=1®0
=0

Thus, (min, (7)) C ker(¢), so by the universal property of quotients, there is an F-module
homomorphism ¢ : A[z]/min, g(r) — A ®p B such that ¢ o7 = ¢.

Now consider the map s : A x B — A[z] determined by s(a, b*) = az* (not every element
of B is of the form b*, but we extend this to an F-algebra homomorphism). Define ¢ = 7wos.



In order to appeal to the universal property of tensor products, observe that ¢ is bilinear
since s is bilinear (by def. of A[z]) and 7 is linear. Let ¢ : A x B — A ®p B be the standard
insertion of generators. By the universal property of tensor products, there is an F-algebra
homomorphism @ : A ¢ B — A|x]/min,r(z) such that ot = ¢.

All necessary maps are now defined so we will now show that @ and ¢ are inverses. For
this purpose, it suffices to show that % is surjective and that ¢ o = idag,5. This suffices
for two reasons. First, every left invertible function is injective, so a left invertible surjection
is a bijection. Second, a left inverse of a bijective function is a full inverse.

To see that P is surjective, consider B|im(,). According to our definitions, we have

M(Plim()) = im(p 0 ¢) = im(p) = im(7 o s)

Since 7 is surjective, we need only show that s is surjective. However, this is immediate
since for any Y, _, axz" € Alz], the definition of s yields

s (i akbk> = Zn: akbk Zakas
k=0

k=0

Hence, ¥ is surjective.

To see that ¢ o B = id s, 5, first consider ¢ o @ o . By our definitions, we have
poPor=gop=¢omos=qos

We will now show that ¢ o s = «. Since ¢ o s is an F-algebra homomorphism, it suffices to

show that for all a € A and k € N, (¢ 0 5)(a,b*) = a @ b*. Again, this follows directly from

the definition of ¢ and s: (¢ o ¢)(a,b*) = (az”*) = a ® b* = 1(a, b*). Therefore, poBor = ¢.

We then have that for any simple tensor a @0* € A®g B, (¢op)(a®@b*) = (popor)(a,b*) =
1(a,b*) = a ® b*. Such tensors form a basis for A @ B, 50 ¢ 0 P = id s, p-

By our previous discussion, we conclude that © is an invertible F-algebra homomorphism,

so A®p B = Alx]/minp(z).

(b) Let F be any transcendental simple extension of Fy, say F = Fy(¢). The polynomial
2? —t is irreducible over I (since v/t € IF) and is monic, so min ;5(z) = 2> —t. By part (a),
we therefore have

F(Vt) @: F(Vt) = F(Vt)[z]/(2® — 1)

But 22 — t is reducible over F(y/t)! In particular, since F has characteristic 2, (x — v/1)? =
22 — 22/t 4+t = 2% — t, so we actually have

F(Vt) @2 F(Vt) 2 F(t)[z]/(x — V1)

F(t)[z]/(x — +/t)? has nonzero element z — v/t which squares to zero, so we are done with
the first example.



Consider Q as a Q-algebra under its usual ring structure and Q-action given by multi-
plication. Then Q ®q Q (is isomorphic to Q since generally R ®r S = S, but let’s use part
(a)) is isomorphic to Q[z]/min; g(x) since Q is generated as a Q-algebra by 1. Since 1 € Q,
this extension is trivial and we arrive at Q ®g Q = Q. Since @ has no nonzero nilpotent
elements and is itself nonzero, we are done.



