Problem 1. Let M be a finitely generated R-module. Show that $R/I \otimes_R M = 0$ if and only if there exists $i \in I$ such that (1 + i)M = 0 in two different ways:

- (1) using Nakayama's lemma.
- (2) avoiding Nakayama's lemma.

Lemma 1. Let M be a R-module, then $R/I \otimes_R M$ is isomorphic to M/IM.

Proof. Consider the short exact sequence

$$0 \longrightarrow I \xrightarrow{\iota} R \xrightarrow{p} R/I \longrightarrow 0$$

where ι is the inclusion map and p is the natural projection $r \mapsto r+I$. Recall that $(-) \otimes_R M$ is a right-exact functor from R-modules to R-modules. It follows that

$$I \otimes_R M \xrightarrow{\iota \otimes \mathrm{id}} R \otimes_R M \xrightarrow{p \otimes \mathrm{id}} R/I \otimes_R M \longrightarrow 0$$

is exact. Now, $R \otimes_R M$ is isomorphic to M. In particular, the map $\Phi : R \otimes_R M \to M$ that is defined on simple tensors as the map $r \otimes m \mapsto rm$ gives such an isomorphism. So, denote $\varphi = \Phi \circ (\iota \otimes id)$ and $\psi = (p \otimes id) \circ \Phi$ then

$$I \otimes_R M \xrightarrow{\varphi} M \xrightarrow{\psi} R/I \otimes_R M \longrightarrow 0$$

is exact. Observe that for $i \in I$ and $m \in M$, $\varphi(i \otimes m) = im$ so the image of φ is IM. That is, ker $\psi = IM$. Furthermore, exactness at $R/I \otimes_R M$ means ψ is surjective. It follows from the fundamental isomorphism theorems that $M/IM \cong R/I \otimes_R M$.

Proposition 2. Suppose M is a finitely generated R-module and $I \subseteq R$ is an ideal. If $R/I \otimes_R M = 0$ then there exists $i \in I$ such that (1 + i)M = 0.

Proof (using Nakayama's lemma directly). Suppose $R/I \otimes_R M = 0$, then by Lemma 1 we also have M/IM = 0. However, this means M = IM. Since M is finitely generated, we may apply Nakayama's lemma, which assets that there exists $i \in I$ such that (1 + i)M = 0. \Box

Proof (avoiding directly citing Nakayama's lemma). Recall that for two finitely generated R-modules M and N, $N \otimes_R M = 0$ if and only if $\operatorname{Ann}(N) + \operatorname{Ann}(M) = R$. By assumption, M is finitely generated and R/I is also finitely generated since 1 + I is a generator. Then $R/I \otimes_R M = 0$ implies that $\operatorname{Ann}(R/I) + \operatorname{Ann}(M) = R$.

Now if $r \in R$ annihilates R/I, then r(1 + I) = I. However, that means that $r \in I$. Clearly, every element of I annihilates R/I, so it follows that $\operatorname{Ann}(R/I) = I$. Then, the fact that $\operatorname{Ann}(R/I) + \operatorname{Ann}(M) = R$ means there is some element $i \in I$ and $x \in \operatorname{Ann}(M)$ such that i + x = 1. It follows that x = 1 + (-i). Since $-i \in I$, then we are done. \Box

Corollary 3. Let M be a finitely generated R module and $I \subseteq R$ be an ideal. Then $R/I \otimes_R M = 0$ if and only if there exists $i \in I$ such that (1 + i)M = 0.

Proof. The forward direction is given by Proposition 3, so suppose there exists $i \in I$ such that (1+i)M = 0. To prove that $R/I \otimes_R M = 0$, it is sufficient to prove that the simple tensors are 0. So let $r + I \in R/I$ and $m \in M$, then

$$(r+I) \otimes m = ((1+i)(r+I)) \otimes m$$
$$= (r+I) \otimes (1+i).m$$
$$= (r+I) \otimes 0$$
$$= 0.$$