Problem 7.

(a) Suppose that R is a $U F D$. Show that a prime ideal in R is generated as an ideal by irreducible elements it contains.
(b) Now suppose that $R=S[x]$ where S is a PID. Show that any prime ideal of R is generated by at most 2 irreducible elements. Show that if a prime requires two irreducible generators, then it has the form $I=(p, f(x))$ where p is prime in S and $f(x)$ is monic and irreducible $\bmod p$.
(c) Sketch the ordered set of primes of $S[x]$ under inclusion to the best of your ability. How long can a chain be?

Theorem 1. If R is a UFD, then prime ideals of R are generated by the irreducible elements it contains.

Proof. Let $\mathfrak{p} \subseteq R$ be a prime ideal and define $P=\{p \in \mathfrak{p}: p$ is irreducible $\}$. Clearly, $(P) \subseteq \mathfrak{p}$ since $P \subseteq \mathfrak{p}$ by definition. Now, let $a \in \mathfrak{p}$ then we want to show $a \in(P)$. By unique factorization $a=u p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. Where $u \in R^{\times}$and each p_{i} is irreducible.

If $k=2$, then by primality either $u p_{1}^{\alpha_{1}}$ or $p_{2}^{\alpha_{2}}$ are in \mathfrak{p}. Since a prime cannot contain units, then $u p_{1}^{\alpha_{1}} \in \mathfrak{p}$ implies $p_{1}^{\alpha_{1}} \in \mathfrak{p}$. Primes are radical, so it follows that either p_{1} or p_{2} is in \mathfrak{p} and thus they are also in \mathfrak{p}. By induction, suppose that if $k=n$ then one of p_{i} for $i=1,2, \ldots, n$ is in \mathfrak{p}. Then if $k=n+1$, we can write $a=\left(u p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}\right) \cdot\left(p_{n+1}^{\alpha_{n+1}}\right)$. Thus, either $u p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}$ or $p_{n+1}^{\alpha_{n+1}}$ is in \mathfrak{p}. That is, either $p_{n+1} \in \mathfrak{p}$, or by the induction hypothesis, some $p_{i} \in \mathfrak{p}$ for $i=1,2, \ldots, n$. It follows that for any k, at least one $p_{i} \in \mathfrak{p}$ and so by definition $p_{i} \in P$. Since a is a multiple of p_{i}, then $a \in(P)$.

If in addition, R is a polynomial ring over a PID then we can describe the prime ideals of R much more explicitly. First we will need a few lemmas.

Lemma 2. Let \mathfrak{p} be a nonzero prime ideal of $S[x]$ where S is a UFD. If \mathfrak{p} does not contain nonzero constants, then it contains an irreducible polynomial f of minimal degree.
Proof. The degrees of polynomials in \mathfrak{p} forms a subset of \mathbb{N}, so by well ordering there exists a polynomial $f^{\prime} \in \mathfrak{p}$ with minimal degree. Since S is a UFD then $S[x]$ is also a UFD. By unique factorization $f^{\prime}=s f$ where $s \in S \backslash\{0\}$ and no primes of S divides f. If s is a unit, then $f^{\prime} \in \mathfrak{p}$ implies $f \in \mathfrak{p}$. If not, then either $s \in \mathfrak{p}$ or $f \in \mathfrak{p}$. However, $s \in \mathfrak{p}$ contradicts that \mathfrak{p} has no nonzero constants, so it follows that $f \in \mathfrak{p}$. Observe that f is irreducible. Suppose not, then since no primes of S divides f, then there must be non-constant polynomials $g, h \in R$ such that $f=g h$. The degrees of g and h must be less than the degree of f. However, by primality either $g \in \mathfrak{p}$ or $h \in \mathfrak{p}$ which contradicts the minimality of the degree of f.

Lemma 3. Let \mathfrak{p} be a prime ideal in a ring R and $\phi: R \rightarrow S$ be a surjective ring homomorphism such that $\operatorname{ker} \phi \subseteq \mathfrak{p}$. Then $\phi(\mathfrak{p})$ is prime in S.
Proof. Suppose $a b \in \phi(\mathfrak{p})$. Let $x, y, z \in R$ such that $\phi(x)=a, \phi(y)=b$, and $\phi(z)=a b$. Since $a b \in \phi(\mathfrak{p})$, we can choose z such that $z \in \mathfrak{p}$. Next, observe that $\phi(x y-z)=\phi(x) \phi(y)-\phi(z)=$ $a b-a b=0$. It follows that $x y-z \in \mathfrak{p}$ because it is in $\operatorname{ker} \phi$. Thus, $z \in \mathfrak{p}$ implies that $x y \in \mathfrak{p}$. By primality, then either x or y is in \mathfrak{p}. It follows that either a or b is in $\phi(\mathfrak{p})$.

Theorem 4. Let $R=S[x]$ where S is a PID, then if \mathfrak{p} is a prime ideal in R, one of the following is true:
(i) $\mathfrak{p}=(0)$.
(ii) \mathfrak{p} is generated by a single irreducible element.
(iii) $\mathfrak{p}=(p, f(x))$ where p is prime in S and $f(x)$ is monic in S and irreducible $\bmod p$.

Proof. Since S is an integral domain because it is a PID, then $S[x]$ is also an integral domain. A ring is a domain if and only if (0) is prime, so it follows that (0) is prime in R. We now consider when $\mathfrak{p} \neq(0)$.

First, let $\iota: S \hookrightarrow S[x]$ be the inclusion map, then ι is a ring homomorphism. Thus, $\iota^{-1}(\mathfrak{p})=\mathfrak{p} \cap S[x]$ is a prime ideal in S. Since S is a PID, then $\iota^{-1}(\mathfrak{p})=(0)$ or (p) where p is a prime in S.

In the case that $\iota^{-1}(\mathfrak{p})=(0), \mathfrak{p}$ consists entirely of non-constant polynomials. By Lemma 2 there exists an irreducible polynomial f with minimal degree in \mathfrak{p}. Now let g be any nonzero polynomial in \mathfrak{p}. Let $K(S)$ be the fraction field of S. Viewing f and g as elements of $K(S)[x]$, define I to be the ideal generated by f and g in $K(S)[x]$. Notice that $K(S)[x]$ is a PID because $K(S)$ is a field, so $I=(h(x))$. It follows that $h(x) \mid f(x)$, but f must also be irreducible in $K(S)[x]$ by Gauss's Lemma. Furthermore, $I \neq(1)$ because otherwise, there exists $a(x), b(x) \in K(S)[x] \backslash\{0\}$ such that $a(x) f(x)+b(x) g(x)=1$. Then there exists $q_{1}, q_{2} \in S \backslash\{0\}$ such that $q_{1} a(x) \in S[x]$ and $q_{2} g(x) \in S[x]$. Denote $a^{\prime}(x)=q_{1} a(x)$ and $b^{\prime}(x)=q_{2} b(x)$ then

$$
q_{2} a^{\prime}(x) f(x)+q_{1} b^{\prime}(x) g(x)=q_{1} q_{2}
$$

That is $q_{1} q_{2} \in \mathfrak{p}$, so $q_{1} \in \mathfrak{p}$ or $q_{2} \in \mathfrak{p}$. This contradicts the assumption that \mathfrak{p} contains no contants. It follows that $h(x)$ is non-constant and divides $f(x)$, so it must be associate to $f(x)$. Thus, $I=(f(x))$ in $K(S)[x]$ so $f(x) \mid g(x)$ in $K(S)[x]$. That is, $g(x)=r(x) f(x)$ for some $r(x) \in K(S)[x]$. Gauss's lemma asserts that if $f(x)$ divides $g(x)$ in $K(S)[x]$ then $f(x)$ divides $g(x)$ in $S[x]$. This shows that \mathfrak{p} is generated by a single irreducible element.

On the other hand, suppose that $\iota^{-1}(\mathfrak{p})=(p)$ for some prime $p \in S$. Observe that (p) is maximal because nonzero prime ideals are maximal in a PID. It follows that $S /(p)$ is a field. Denote $F=S /(p)$ and let $\pi: S \rightarrow S /(p)$ be the natural projection. This induces the ring homomorphism $\tilde{\pi}: S[x] \rightarrow F[x]$ defined by

$$
\tilde{\pi}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right)=\pi\left(a_{n}\right) x^{n}+\pi\left(a_{n-1}\right) x^{n-1}+\cdots+\pi\left(a_{1}\right) x+\pi\left(a_{0}\right) .
$$

The kernel of $\tilde{\pi}$ is (p), which is contained in \mathfrak{p}. Thus by Lemma $3, \tilde{\pi}(\mathfrak{p})$ is prime. Since F is a field, then $F[x]$ is a PID, so $\tilde{\pi}(\mathfrak{p})$ is either (0) or $(\bar{f}(x))$ where $\bar{f}(x)$ is monic and irreducible in $F[x]$. If $\tilde{\pi}(\mathfrak{p})=0$, then \mathfrak{p} consists of polynomials whose coefficients are multiples of (p), but that is just (p).

On the other hand, suppose $\tilde{\pi}(\mathfrak{p})=(\bar{f})$. We may pick $f(x) \in S[x]$ that is monic such that $\tilde{\pi}(f(x))=\bar{f}(x)$. That is, the coefficients of $\bar{f}(x)$ take the form $a_{i}+\mathfrak{p}$ where $a_{n}=1$. Then the polynomial with coefficients of a_{i} satisfies this description. If there exists a nontrivial factorization $f(x)=a(x) b(x)$ then because $f(x)$ is monic $a(x)$ and $b(x)$ must both be non-constant polynomials. This induced the nontrivial factorization $\overline{f(x)}=\tilde{\pi}(a(x)) \tilde{\pi}(b(x))$, which contradicts the irreducibility of $\bar{f}(x)$. Thus, $f(x)$ must be irreducible.

Since $\tilde{\pi}$ is surjective, then

$$
\tilde{\pi}^{-1}((\bar{f}))=\tilde{\pi}^{-1}(\tilde{\pi}(\mathfrak{p}))=\mathfrak{p}+\operatorname{ker} \tilde{\pi}=\mathfrak{p}+(p)
$$

Now, $(p) \subseteq \mathfrak{p}$ so $\mathfrak{p}=\mathfrak{p}+(p)$. Notice that $f \in \tilde{\pi}^{-1}((\bar{f}(x)))$ and \mathfrak{p} contains (p). Thus, $(p, f(x)) \subseteq \mathfrak{p}$. We now show that in fact $(p, f(x))=\mathfrak{p}$. Let $g \in \mathfrak{p}$, then $\bar{g}(x)=\bar{f}(x)$. $\bar{q}(x)$. Let $q(x)$ be a polynomial that reduces to $\bar{q}(x)$ then $\tilde{\pi}(f(x) q(x))=\tilde{\pi}(g(x))$. That is, $f(x) q(x)-g(x) \in(p, f(x))$. However, $f(x) q(x) \in(p, f(x))$ so $g(x)$ must also be in $(p, f(x))$. It follows that we also have $\mathfrak{p} \subseteq(p, f(x))$, so $\mathfrak{p}=(p, f(x))$.

Corollary 5. A complete description of the ordering of primes in $S[x]$ is given by
(i) (0) \preceq any prime.
(ii) $(p) \preceq(q)$ if and only if $(p)=(q)$ and $(f(x)) \preceq(g(x))$ if and only if $(f(x))=(g(x))$.
(iii) $(p) \preceq(q, f(x))$ if and only if $(p)=(q)$.
(iv) $(f(x)) \preceq(p, g(x))$ if and only if $g(x) \mid f(x) \bmod p$.
(v) $(p, f(x)) \preceq(q, g(x))$ if and only if $(p, f(x))=(q, g(x))$ (i.e. $(p)=(q)$ and $f(x) \equiv g(x)$ $\bmod p)$.

Furthermore, a chain can have length at most 2.
Proof. (i) and (ii) hold in any integral domain. (iii) follows from the fact that p and q both generate the principal ideal $\iota^{-1}((p, f(x)))$, so p and q are associates. (iv) Observe that $f(x) \in(p, g(x))$ if and only if $f(x)=h_{1}(x) p+h_{2}(x) g(x)$, but this is equivalent to the condition that $g(x) \mid f(x) \bmod p$. For (v), first observe that $(p)=(q)$ because otherwise, the $(p, q)=1$ but $(p, q) \subseteq(q, g(x))$. Now, by the isomorphism theorems, the lattice of ideals in $S /(p)$ is isomorphic to the lattice of ideals containing (p). However, $(p, f(x))$ and $(q, g(x))$ are both inverse images of maximal ideals under $\tilde{\pi}$. Then they are both maximal among ideals containing (p). Thus, containment implies equality.

