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6. Here we consider Spec(R) as a topological space (the primes equipped with the Zariski
topology) and as an ordered set (the primes equipped with the inclusion order).

(a) Show that the inclusion order on the prime ideals can be recovered from the topology of
Spec(R).

(b) Show that conversely, if R is a Noetherian ring, then the topology of Spec(R) can be
determined from the inclusion order on the prime ideals.

(c) Show that if R is not Noetherian, then the topology of Spec(R) may not be recoverable
from the inclusion order on the primes.

Proof.

(a) Let p and q be prime ideals of the commutative ring R. Note that by the definition of
Spec(R), the closed sets are the vanishing sets V (S) for some S ⊆ R. That is, they are
given by sets of primes which contain a given subset S. So we have that

{q} =
⋂
S⊆q

V (S).

Note that if p ∈ {q}, then p ∈ V (S) for all S ⊆ q, hence in particular p ∈ V (q). Also,
if p ∈ V (q), then q ⊆ p so that S ⊆ p for all S ⊆ q. Thus, if p ∈ V (q) then p ∈ {q}
as well, and we have that {q} = V (q).

In summary, we have that the following are equivalent for p,q ∈ Spec(R):

• p ∈ {q}
• p ∈ V (q)

• q ⊆ p.

Thus, given the topology of Spec(R) we can decide the inclusion relation for any two
prime ideals.

(b) Let V = V (S) for some S ⊆ R be an arbitrary closed set of Spec(R). We always have
that

V (S) = V (〈S〉) = V (
√
〈S〉) = V (

⋂
S⊆p

p prime

p).

Since R is Noetherian, by Homework 2 Problem 5 this intersection can be taken over
the finitely many prime ideals p1, . . . ,pn which are minimal with respect to containing
S. We have then that

V (S) = V (∩ni=0pi)

but since this intersection is finite we may equivalently take the union over the V (pi)

V (∩ni=0pi) = ∪ni=1V (pi)
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so that every closed set V (S) is the union of finitely many closed sets of the form V (p)
for some prime ideal p.

Each V (p) is the set of all primes which contain p. But this is exactly the principal
filter 1 generated by p in the inclusion order of prime ideals!

Hence, if R is Noetherian then we have that the following are equivalent for any subset
V ⊆ Spec(R):

• V is closed in the Zariski topology.

• V is a finite union of principle filters in the inclusion order.

(c) Consider the field F2 and the ring R = Fω2 of countably many copies of ω. Then R is
not Noetherian, as for instance the chain of ideals

〈(0, 0, 0, . . .)〉 ⊆ 〈(1, 0, 0, . . .)〉 ⊆ 〈(1, 1, 0, . . .)〉 . . .

is an ascending chain of ideals that never stabilizes.

Note that we can think an element (bn)n∈ω ∈ R as a characteristic function χB : ω → F2

for some subset B ⊆ ω, regarding bn = 1 as indicating that n ∈ B and bn = 0 as n /∈ B.
Then the zero element of R, the sequence where bn = 0 for all n, corresponds to χ∅, the
characteristic function of the empty set. The unit element, where bn = 1 for all n, is
then χω.

Since anbn = 1 if and only if an = bn = 1, the corresponding multiplication operation on
characteristic functions χA and χB respectively, should produce a χC such that n ∈ C
if and only if n ∈ A and n ∈ B. Hence, we must have C = A ∩ B, so we define
multiplication by χAχB = χA∩B.

Similarly, since an + bn = 0 if and only if an = bn, the addition operation should choose
a set C ⊆ ω such that n ∈ C if and only if n ∈ A and n /∈ B or n ∈ B and n /∈ A.
Hence, χA + χB = χAδB where AδB = (A ∪ B) \ (A ∩ B) is the symmetric difference of
A and B, i.e. all those things that are in exactly one of A or B.

Hence, we can think of R as the ring of characteristic functions on subsets of ω, with
the above operations and distinguished elements. We will show that the topology of
Spec(R) is not definable from the order relation on Spec(R).

First we claim that a subset I of R is an ideal if and only if the characteristic functions
in I correspond to a collection of subsets F of ω whose complement F c forms a filter2.
That is, we must show that these subsets are downwards closed, i.e. if χB ∈ I and A ⊆ B
then χB ∈ I, and that they are upwards directed, i.e. if χA ∈ I and χB ∈ I then we have
χA∪B ∈ I.

Suppose that I is an ideal. Note then that if χB ∈ I and A ⊆ B, then χAχB =
χA∩B = χA ∈ I since I is closed under multiplication by elements of R, so that I is

1A filter of a poset P is a nonempty subset F that is upwards closed, i.e if x ∈ F and x ≤ y then y ∈ F ,
an downward directed, i.e. for every x, y ∈ F there is some z ∈ F such that z ≤ x and z ≤ y. A filter is
principal if is the set of all elements above some given x ∈ F .

2This is also called being an ideal in the inclusion poset of subsets of ω, we but we avoid the clash in
terminology here.
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downwards closed. Then, if χA and χB are both in I, consider A ∪ B. We have that
A ∪ B = (AδB) ∪ (A ∩ B) where the right hand union is now disjoint, so χA∪B =
(χA + χB) + χAχB. The right hand side is a sum of elements of I, so χA∪B ∈ I and I is
upwards directed.

Now, suppose that the set F of subsets of ω corresponding to I is downwards closed and
upwards directed. Let χA, χB ∈ I. Then since F is upwards directed, A∪B ∈ F so that
χA∪B ∈ I. Since it is downwards closed, the symmetric difference AδB, being a subset
of A ∪B, is also in F , so χA + χB = χAδB ∈ I and I is closed under addition.

Now suppose that χB ∈ I and let χA ∈ R be arbitrary. Then since F is downwards
closed, we have A ∩ B ∈ F as it is a subset of both. Hence χAχB = χA∩B ∈ I and I
is an ideal as desired. Thus, we have that I is an ideal if and only if F is downwards
closed and upwards directed.

We claim also that an ideal I is prime if and only if filter F c is an ultrafilter3 Hence, we
wish to show that I is prime if and only if for any subset B ⊆ ω, either B or ω \B is in
F . First, suppose that I is prime. Then since χBχω\B = χ∅ ∈ I, we must have at least
one of χB or χω\B in I, hence B or ω \B is in F as desired. Now suppose the converse,
and let χAχB ∈ I for some χAχB ∈ R. Suppose further that χA /∈ I. Then we must
have that χω\A ∈ I. But then χω\AχB ∈ I and so χAχB + χω\AχB = χB ∈ I. Hence I is
prime.

Two different prime ideals p,q ∈ Spec(R) must thus be incomparable. If they were not,
and say p ⊆ q, then the corresponding filter for p is a subset of the filter for q, hence
there would be subsets A of ω in the filter for q for which neither A or its complement are
decided on by the filter for p, contradicting that it is an ultrafilter. Note also that there
must be infinitely many such prime ideals, as for instance there is a principal ultrafilter
on ω for each element n ∈ ω Thus Spec(R) is here an infinite antichain.

Note then that the order relation on Spec(R) is exactly the equality relation. Any
topology on Spec(R) defined from the order relation should be invariant under maps
which preserves the order relation. In this case, any such topology must be invariant
under permutations, as these are exactly the map which preserve the order relation. We
show that there is no spectral topology on a space X = Spec(R) which is compatible
with every permutation of X. To do this, we will show that these properties imply every
singleton is open, hence X cannot be compact, contradicting that X is spectral.

First we will show that singletons are closed so that X is reducible. Suppose that X has
a topology that is compatible with every permutation of X. Since every nontrivial ring
has a maximal ideal, and for a maximal (hence prime) ideal m, {m} = V (m), we have
that a nonempty spectral space X always has at least one closed point. The topology
is compatible with permutations, hence if we apply a permutation to the closed set {m}
the resulting set is also closed. But we can map any points x1, x2 ∈ X to each other
via a transposition (x1x2), leaving all other other points invariant, hence every point in
X must be closed. Since every singleton is closed, the irreducible components of X are
exactly the singletons. Hence, X is reducible.

3A filter (of subsets of some set X) is an ultrafilter if for any subset S ⊆ X, either S or X \ S is in the
filter.

3



Commutative Algebra
Assignment 2

Howie Jordan
Michael Levet

Connor Meredith

Note that since X is reducible, if X = Y ∪ Z for two nonempty proper closed subsets
Y, Z ⊂ X, then by taking complements relative to X, Xc = (Y ∪ Z)c = Y c ∩ Zc. Note
that the complements Y c and Zc are nonempty as both Y and Z are proper. But,
Xc = ∅, so Y c and Zc are nonempty disjoint open sets.

Now we will produce an open singleton by manipulating Y c and Zc with permutations.
Let y ∈ Y c and z ∈ Zc. Then y 6= z, so consider the transposition σ = (yz) applied
to Y c. Since the topology is invariant under permutations, σY c is also open. But, σY c

clearly contains z, so (σY c) ∩ Zc = {z} is an intersection of two open sets, hence open.

Since some singleton is open, by invariance under permutations we have every singleton
is open similar to the above with closed singletons. But, if every singleton is open,
then X has an open cover of singletons for which no subcover can cover X, so X is not
compact. Hence, no space X can be both spectral and invariant under permutations. �
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