calghw2p5

Toby Aldape, Chase Meadors, Mateo Muro

September 2020

Suppose that $I \triangleleft R$ has infinitely many primes that are minimal above it.
(a) Show that I is not prime.
(b) Use (a) to show that there is an ideal properly containing I that also has infinitely many minimal primes above it.
(c) Conclude that R is not Noetherian. (Expressed more positively, any Noetherian ring has the property that every ideal I has only finitely many minimal primes containing it, hence \sqrt{I} is the intersection of finitely many primes.

Proof.

(a) Since I is contained in more than prime minimal over I, at least one inclusion must be proper. Because I is a proper subset of some prime minimal over I, it cannot itself be prime.
(b) Because I is not prime, there must be two ideals J, K such that $J, K \nsubseteq I$ and $J K \subseteq I$. We may assume that $I \subsetneq J, K$ by the following argument.
Let $\widetilde{J}=J+I$. Let $\widetilde{K}=K+I$. Then we have $J \subsetneq \widetilde{J}$ and $K \subsetneq \widetilde{K}$. Also,

$$
\widetilde{J} \widetilde{K}=(J+I)(K+I) \subseteq J K+I=I .
$$

Then \widetilde{J} and \widetilde{K} are ideals with the desired properties.
For each prime p containing I we have

$$
J K \subseteq I \subseteq p,
$$

showing that either $J \subseteq p$ or $K \subseteq p$. Since there are infinitely many such minimal primes, either J or K must be contained in infinitely many primes minimal over I. Suppose without loss of generality that J is contained in infinitely many primes minimal over I. Let p be a prime minimal over I containing J. Any prime q such that $J \subseteq q \subsetneq p$ would also be a prime such that $I \subseteq q \subsetneq p$, contradicting the minimality of p over I. Therefore the infinitely many primes (minimal over I) containing J are also minimal over J.
(c) Let $I_{0}=I$. Define a sequence $\left(I_{0}, I_{1}, \ldots\right)$ recursively such that I_{n+1} is some ideal properly containing I_{n} that is contained in infinitely many minimal primes, whose existence is guaranteed by part (b). Since all inclusions are proper, we have

$$
\begin{equation*}
I_{0} \subsetneq I_{1} \subsetneq \ldots, \tag{1}
\end{equation*}
$$

showing that R fails the ascending chain condition and is not Noetherian.

