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4. Show that J(R) and N(R) can be characterized in the following ways.

(a) J(R) is the largest ideal J / R such that all covers below J in Ideal(R) are of abelian
type. (That is, I ≺ K ≤ J implies K2 ⊆ I)

(b) N(R) is the largest ideal I / R such that there is a well-ordered chain of ideals

0 = I0 ≤ I1 ≤ I2 ≤ · · · ≤ Iµ = I

such that

(i) Iα+1 is abelian over Iα for all α, and

(ii) Iλ =
⋃
κ<λ Iκ whenever λ is a limit ordinal.

Proof.
(a) Let I ≺ K ≤ J(R). Viewing I,K as R-modules, we have that K/I is a simple module.
Therefore, J(R)K ⊆ I. This inclusion still holds if we shrink J(R)K to K2. Therefore, all
covers below J(R) are of abelian type.

We now need to show that J(R) is the largest ideal with this property. That is, if L has the
property that all covers below it are of abelian type, then L ≤ J(R).

For contradiction assume that L 6≤ J(R), then, there exists a maximal ideal M such that
L 6≤ M. Therefore, we have that L +M = R and we have perspective intervals: L ∩M
to L and M to R. But M is maximal, therefore, L ∩M ≺ L. By L’s covering property,
L2 ≤ L ∩M and thus L2 ≤ M. But, sinceM is maximal, it’s prime, and hence, L ≤ M,
which is a contradiction.

(b) Let I be an ideal with a well ordered chain satisfying (i) and (ii), we need to show
that all the elements of I are nilpotent. Certainly, all the elements of the 0 ideal are nilpo-
tent. If all the elements of Iα are nilpotent, then, because I2α+1 ≤ Iα we have that a ∈ Iα+1

satisfies a2 ∈ Iα and is hence nilpotent. Lastly, let λ be a limit ordinal and assume that Iκ
is composed of nilpotent elements for all κ < λ. By property (ii), each element a ∈ Iλ is
already in Iκ for some κ < λ and is hence nilpotent. This shows that all ideals with a well
ordered chain satisfying (i),(ii) are in N(R) and this particularly applies to the largest ideal
with these properties.
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Conversely, we can express N(R) with a well-order chain in the following way:

Let I0 := (0). If possible, choose an element x1 ∈ N(R) \ I0 such that x21 ∈ I0, that is,
choose an x1 such that x21 = 0, and let I1 := 〈x1, I0〉 = (x1). We can generalize this to a
successor ordinal κ + 1 by finding (if possible) xκ+1 ∈ N(R)\Iκ such that x2κ+1 ∈ Iκ and
defining Iκ+1 = 〈xκ+1, Iκ〉. And for a limit ordinal λ, we define Iλ =

⋃
κ<λ

Iκ.

By construction, for κ ≤ γ we have Iκ ≤ Iγ, and since we’re indexing by ordinals, this is
a well ordered chain. Because all the generators are from N(R), this is a chain of ideals in
N(R).

An element of I2κ+1 has the form a1b1 + ... + anbn for some n and ai, bi ∈ {xκ+1} ∪ Iκ+1.
If ai = bi = xκ+1 then aibi = xκ+1 ∈ Iκ, and if one of ai, bi is in Iκ then the product
is immediately in Iκ. Therefore, I2κ+1 ≤ Iκ satisfying (i). Property (ii) follows by our
construction for Iλ for limit ordinals.

This chain terminates at some ordinal µ. This is because at each (successor) ordinal, we’re
adjoining one element of N(R) and there’s a set-many elements in N(R) while the collection
of ordinals forms a proper class.

This shows that Iµ ≤ N(R). And since this construction terminates, no more elements could
be adjoined, meaning that for all α ∈ N(R) \ Iµ we have α2 6∈ Iµ. We now need to show that
N(R) ≤ Iµ.

For contradiction, let α ∈ N(R)\Iµ, so that α is nilpotent but α2 6∈ Iµ. There exists an n such
that α2n = 0 ∈ Iµ. α2n−1 is nilpotent and it squares to 0 which is in Iµ, therefore, α2n−1 ∈ Iµ.
We can continue this process proving that α2n−2

, α2n−3
, ... are in Iµ, but eventually, we’ll find

some α2s−1 6∈ Iµ with α2s ∈ Iµ, which contradicts the fact that Iµ contains all the nilpotent
elements that square into it.
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