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3. Prove that the Jacobson radical contains no nonzero idempotents in each of
the following ways:

(a) using the characterization of J(R) as the intersection of maximal ideals.

(b) using the characterization of J(R) as the largest ideal J such that 1 + J
consists of units.

(c) using the characterization of J(R) as the intersection of annihilators of all
simple modules.

Solution: We first summarize two calculations in a small lemma that is useful in parts (a)
and (b):

Lemma: Let e be an idempotent of R. Then 1− e is also an idempotent of R and if 1− e is
a unit, then e = 0.

Proof: First, observe that since e2 = e, we have:

(1− e)2 = 1− 2e+ e2 = 1− 2e+ e = 1− e

so 1− e is also an idempotent of R. Now suppose that 1− e is a unit. Then letting r denote
the multiplicative inverse of 1− e, we can perform the following calculation:

e = 1 · e = (r · (1− e)) · e = r · ((1− e) · e) = r · (e− e2) = r · (e− e) = r · 0 = 0

�

Suppose that e is an idempotent contained in J(R).

(a) Suppose for sake of contradiction that M is a maximal ideal containing 1 − e. M
also contains e since J(R) is the intersection of all maximal ideals of R and e ∈ J(R). Then
1 = (1 − e) + e ∈ M , so M = R, contradicting the maximality of M . Hence, no maximal
ideal of R contains 1 − e, which means that 1 − e is a unit. By the lemma, e = 0, so J(R)
contains no nonzero idempotents.

(b) Since J(R) is an ideal, −e ∈ J(R) and so 1− e ∈ 1 + J(R) is a unit. By the lemma,
e = 0, so J(R) contains no nonzero idempotents.

(c) Suppose for sake of contradiction that e is nonzero. Let (P,⊆) be the poset of ideals
of R which do not contain the ideal (e).

Claim: (P,⊆) has a maximal element.
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Proof: Since e is nonzero, the ideal {0} does not contain (e), and so P is nonempty.

Next, let {Iα}α<β be a chain of ideals in (P,⊆) where β is some nonzero ordinal. We will
show that I :=

⋃
α<β Iα belongs to P . First, to see that I is an ideal, let x, y ∈ I. Then

there exist ordinals α1 ≤ α2 such that x ∈ Iα1 and y ∈ Iα2 . But Iα1 ⊆ Iα2 so x+y ∈ Iα2 ⊆ I.
Additionally,

RI = R
⋃
α<β

Iα =
⋃
α<β

RIα ⊆
⋃
α<β

Iα

since each Iα is an ideal. Therefore, I is an ideal. Suppose for sake of contradiction that
(e) ⊆ I. Then e ∈ I, so there is some α < β such that e ∈ Iα. But then (e) ⊆ Iα, which
contradicts the fact that Iα ∈ P . Hence, I ∈ P . Moreover, I is an upper bound for {Iα}α<β
by definition, and so (P,⊆) is inductively ordered. By Zorn’s Lemma, there is a maximal
element of (P,⊆). �

Let M be a maximal element of (P,⊆). We now show that (M + (e))/M is a simple
R-module under the action r · (s + M) = rs + M . First, observe that if N is a submodule
of M + (e) under the action of multiplication, then N is an abelian group and for all r ∈ R
and n ∈ N , rn ∈ N . In other words, every submodule of M + (e) is an ideal of R. By the
lattice isomorphism theorem, in order to show (M + (e))/M is simple, we need only show
that there are no ideals of R strictly between M and M + (e). Let I be an ideal of R and
suppose M ⊆ I ⊆M + (e). Also suppose that I 6= M . Since M is maximal for the property
of not containing (e), I contains (e). I also contains M , so I contains M+(e), the least ideal
containing both M and (e). Hence, I = M + (e) and there are no ideals strictly between M
and M + (e), and so (M + (e))/M is a simple R-module.

Finally, observe that e · (e+M) = e2 +M = e+M = 0 +M since e belongs to J(R), the
intersection of annihilators of simple R-modules. This implies that e ∈M , but by definition,
M does not contain e! This is a contradiction, so e = 0.
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