2.(Nilradical versus Jacobson radical)

- (a) Show that $\mathfrak{N}(R \times S) = \mathfrak{N}(R) \times \mathfrak{N}(S)$ and $J(R \times S) = J(R) \times J(S)$. Hence, if the nilradical and the Jacobson radical are equal in each coordinate of a product, then they are equal in the product.
- (b) Show the result of part (a) does not hold for infinite products by showing that the nilradical and Jacobson radical are equal in all coordinates of the product $T = \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8 \times \cdots$, but $\mathfrak{N}(T) \neq J(T)$.

Proof.

- (a) Suppose that (r, s) ∈ 𝔅(R×S). Then for some positive integer m, (r, s)^m = 0. Parsing this out, we get (r, s)^m = (r^m, s^m) = (0_R, 0_S), so we have r^m = 0_R and s^m = 0_S. This means r ∈ 𝔅(R) and s ∈ 𝔅(S), so that (r, s) ∈ 𝔅(R) × 𝔅(S). Now suppose that (r, s) ∈ 𝔅(R) × 𝔅(S). Then for some positive integers m, n, r^m = 0_R and sⁿ = 0_S. We have (r, s)^{m+n} = (r^{m+n}, s^{m+n}) = (r^mrⁿ, s^msⁿ) = (0_Rrⁿ, s^m0_s) = (0_R, 0_S) so that (r, s) ∈ 𝔅(R × S). We conclude that 𝔅(R × S) = 𝔅(R) × 𝔅(S). Suppose (r, s) ∈ J(R×S). That means for any (u, v) ∈ R×S, the element 1-(u, v)(r, s) is invertible. Parsing this out, we get that (1_R, 1_S) (u, v)(r, s) = (1_R ur, 1_S vs), so we have 1_R ur is invertible for any u ∈ R and 1_S vs is invertible for any v ∈ S. This means r ∈ J(R) and s ∈ J(S) so that (r, s) ∈ J(R) × J(S). Now assume we have (r, s) ∈ J(R) × J(S). This means that 1_R ur is invertible for any u ∈ R and 1_S vs
 - is invertible for any $v \in S$. Then 1 (u, v)(r, s) is invertible for any $(u, v) \in R \times S$ so that $(r, s) \in J(R \times S)$. We conclude that $J(R \times S) = J(R) \times J(S)$.
- (b) The claim is that N(Z_{2ⁿ}) = J(Z_{2ⁿ}) = (2) for any n ≥ 1. First, 2ⁿ = 0, so 2 ∈ N(Z_{2ⁿ}), so (2) = N(Z_{2ⁿ}) since (2) is maximal and the nilradical is never the whole ring with unity. Secondly, all the ideals of Z_{2ⁿ} are of the form 2^m for some integer 1 ≤ m ≤ n. Then the only maximal ideal is (2¹) = (2) and (2) = J(Z_{2ⁿ}). Despite that, we do get that J(T) ≠ N(T). Take the element j = (2, 2, 2, ...). We have that 1 - tj is odd for any t ∈ T. In (Z_{2ⁿ}), all odd numbers are invertible. Hence, j ∈ J(T). However, assume by way of contradiction that there exists some positive integer m such that j^m = 0. But that implies that 2^m = 0 in Z_{2^{m+1}}. So we have j ∉ N(T) and ultimately J(T) ≠ N(T).