9. Show that the map $\operatorname{Idl}(R) \rightarrow L: I \mapsto \operatorname{nil}(I)$ from the lattice of ideals of R to the lattice of semiprime ideals is a homomorphism with respect to binary \wedge and infinitary V.

Proof: Let I and J be ideals of a commutative ring R and let φ denote the map of interest. We first show that $\varphi(I \wedge J)=\varphi(I) \wedge \varphi(J)$. Recall that in both $\operatorname{Idl}(R)$ and L, the meet of two ideals is their intersection. Let $r \in \varphi(I \wedge J)$. Then there is some $n \in \mathbb{N}$ such that $r^{n} \in I \wedge J=I \cap J$. For this same $n, r^{n} \in I$ and $r^{n} \in J$, and so $r \in \varphi(I) \cap \varphi(J)=\varphi(I) \wedge \varphi(J)$. Thus, $\varphi(I \wedge J) \subseteq \varphi(I) \wedge \varphi(J)$. Now let $r \in \varphi(I) \wedge \varphi(J)$. Then there are values $n_{1}, n_{2} \in \mathbb{N}$ such that $r^{n_{1}} \in I$ and $r^{n_{2}} \in J$. Since I is an ideal,

$$
r^{\max \left(n_{1}, n_{2}\right)}=r^{\max \left(n_{1}, n_{2}\right)-n_{1}} \cdot r^{n_{1}} \in I .
$$

Note that $\max \left(n_{1}, n_{2}\right)-n_{1}$ is non-negative, so this expression is well-defined. Through a similar argument, we see that $r^{\max \left(n_{1}, n_{2}\right)}$ belongs to J as well. Hence, $r \in \varphi(I \cap J)=\varphi(I \wedge J)$, and so $\varphi(I) \wedge \varphi(J) \subseteq \varphi(I \wedge J)$. In conclusion, $\varphi(I) \wedge \varphi(J)=\varphi(I \wedge J)$.

Now let κ be any set and let I_{k} be an ideal of R for each $k \in \kappa$. We now show that $\varphi\left(\bigvee_{k \in \kappa} I_{k}\right)=\bigvee_{k \in \kappa} \varphi\left(I_{k}\right)$. Before we begin, recall that the join (in $\operatorname{Idl}(R)$) of a set of ideals is the sum of those ideals, and the join (in L) of a set of ideals is the radical of the sum of those ideals. Thus, our goal is to show:

$$
\sqrt{\sum_{k \in \kappa} I_{k}}=\sqrt{\sum_{k \in \kappa} \sqrt{I_{k}}}
$$

(\subseteq) Since $\sqrt{ }$ is extensive, we have that for all $k \in \kappa, I_{k} \subseteq \sqrt{I_{k}}$. Sums are monotone in each of their coordinates, so $\sum_{k \in \kappa} I_{k} \subseteq \sum_{k \in \kappa} \sqrt{I_{k}}$. Finally, $\sqrt{\cdot}$ is also monotone, so $\sqrt{\sum_{k \in \kappa} I_{k}} \subseteq \sqrt{\sum_{k \in \kappa} \sqrt{I_{k}}}$.
(ِ) Let $r \in \sum_{k \in \kappa} \varphi\left(I_{k}\right)$. By the definition of sum, there exist finitely many indices $k_{1}, \ldots, k_{s} \in \kappa$ and elements $r_{1} \in \varphi\left(I_{k_{1}}\right), \ldots, r_{s} \in \varphi\left(I_{k_{s}}\right)$ such that $r=r_{1}+\cdots+r_{s}$. Moreover, there are values n_{1}, \ldots, n_{s} such that $r_{i}^{n_{i}} \in I_{k_{i}}$ for $i \in\{1, \ldots, s\}$. Since R is commutative, we may use the multinomial theorem to calculate powers of r. Specifically, for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
r^{n} & =\left(r_{1}+\cdots+r_{s}\right)^{n} \\
& =\sum_{e_{1}+\cdots+e_{s}=n}\binom{n}{e_{1}, \ldots, e_{s}} \prod_{i=1}^{s} r_{i}^{e_{i}}
\end{aligned}
$$

We intend to show that for some value of $n, r^{n} \in \bigvee_{k \in \kappa} I_{k}$. For this purpose, we need only choose a sufficiently high value of n so that $e_{i} \geq n_{i}$ for some value of i in each term of the
sum above. This is sufficient because then $r_{i}^{e_{i}} \in I_{k_{i}}$ for some i in each term of the sum, but $I_{k_{i}}$ is an ideal, so the entire term will belong to $I_{k_{i}}$. Ultimately, r^{n} will be a finite sum of elements of $I_{k_{1}}, \ldots, I_{k_{s}}$, and so it will belong to $\sum_{k \in \kappa} I_{k}$.

Let $n=s \cdot \max \left(n_{1}, \ldots, n_{s}\right)$ and choose any exponents e_{1}, \ldots, e_{s} satisfying $e_{1}+\cdots+e_{s}=n$. Then for all $i \in\{1, \ldots, s\}$, we have that $n / s=\max \left(n_{1}, \ldots, n_{s}\right) \geq n_{i}$. Additionally, $e_{i} \geq n / s$ for some $i \in\{1, \ldots, s\}$ (otherwise, we would have $n=e_{1}+\cdots+e_{s}<n / s+\cdots+n / s=n$). Combining the last two sentences, we obtain $e_{i} \geq n / s=\max \left(n_{1}, \ldots, n_{s}\right) \geq n_{i}$ for some $i \in\{1, \ldots, s\}$. By the preceeding discussion, $r^{n} \in \sum_{k \in \kappa} I_{k}$, and so $r \in \sqrt{\sum_{k \in \kappa} I_{k}}$. Our choice of r was arbitrary, so $\sum_{k \in \kappa} \sqrt{I_{k}} \subseteq \sqrt{\sum_{k \in \kappa} I_{k}}$. Finally, $\sqrt{\cdot}$ is monotone and idempotent, so $\sqrt{\sum_{k \in \kappa} \sqrt{I_{k}}} \subseteq \sqrt{\sqrt{\sum_{k \in \kappa} I_{k}}}=\sqrt{\sum_{k \in \kappa} I_{k}}$.

