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1. Every commutative ring is a homomorphic image of a subring of a field. It follows that
any positive universal sentence satisfied by fields is also satisfied by any commutative ring
(e.g. the Cayley-Hamilton Theorem).

Proof.
First we note that any integral domain D can inject into a field via constructing the field

of fractions. Hence, every integral domain is isomorphic to a subring of a field.
Next, we note that for any setX we can construct a free commutative ring of characteristic

0 F (X) on X. This can be given explicitly by taking the ring Z[X] consisting of finite sums
of integers and integer multiples of finite formal products of elements of X.

We show that Z[X] is an integral domain. Any element of Z[X] can be represented as a
multivariate polynomial in the elements of X, say

p(X) =
D∑
i=0

zi

Ni∏
j=0

xij

where each zi ∈ Z, D,Mi ∈ N, and xij are formal indeterminants, one for each element of
X. We take these representations to be reduced, so that each product of Ni indeterminants
in X is distinct. We also impose a linear order on the set of indeterminants X1 and then
impose the induced lexicographic order on the set of monomials.

For any two p(X), q(X) ∈ Z[X], p(X)q(X) can then be given by

p(X)q(X) = (

Dp∑
i=0

zi

Ni∏
j=0

xij)(

Dq∑
i=0

wi

Mi∏
j=0

xij).

Consider the greatest monomial of p(X) and q(X) under the lexicographic ordering, say
p1(X) = z

∏N
a=0 xa and q1(X) = w

∏M
b=0 x

′
b. Then the product of these monomials will be

given by

zw

N∏
a=0

xa

M∏
b=0

x′b

and since z, w ∈ Z are nonzero, and Z is an integral domain, their product zw is nonzero.
We also claim that there will be no other monomials in the product p(X)q(X) with the same
indeterminates. To see this, consider that for any other monomial of p(X), say p0(X) we
have p0(X) < p1(X). Hence for any q0(X) a monomial of q(X), the product p0(X)q0(X)
then is strictly less than p1(X)q1(X) in the lexicographic ordering and will not cancel will
p1(X)q1(X). Thus, the product p(X)q(X) is not 0, so Z[X] is an integral domain for any X.

We will also show that Z[X] satisfies the universal property for the free commutative ring,
that is, the set maps X → U(R) are in bijection with the ring homomorphisms Z[X]→ R,
where U : CRing→ Set is the functor taking a ring to its underlying set.

First, suppose that we are given a set map f : X → U(R). Then we can define φ :
Z[X] → R by mapping each formal indeterminant x ∈ X to f(x) ∈ R and each element

1This may require the well-ordering principle, and hence the axiom of choice.
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z ∈ Z to z · 1R (and in particular, 0 ∈ Z to 0R ∈ R). Then φ is a ring homomorphism as it
trivially respects all the ring operations. Note that if g : X → U(R) is another set map that
induces the same homomorphism φ, then it must be that f(x) = g(x) for all x ∈ X so that
f = g, so that this assignment is injective.

Now suppose that we are given a ring homomorphism φ : Z[X] → R. Then define
f : X → U(R) by mapping x 7→ φ(x). This is clearly a function in Set, and this is exactly
the f which induces φ, hence the assignment of ring homomorphisms to set functions is also
surjective. Thus, we have the desired bijection so that Z[X] is indeed free.

By the universal property of the free commutative ring, for any commutative ring R any
set function X → U(R) extends to a ring homomorphism F (X) → R. In particular then,
this is true for the identity map id : U(R) → U(R), that is, we have a commutative ring
homomorphism f : F (R) → R extending the identity map. This map is surjective, as for
each r ∈ R there is a formal symbol r′ ∈ F (R) and we have that f(r′) = id(r) = r. Thus we
have shown that R is a homomorphic image of the integral domain F (R), establishing the
first claim.

Say the sentence ∀x1∀x2 . . . ∀xnφ(x1, . . . , xn) where φ is positive and quantifier free is
satisfied by all fields. Since the quantifier free sentence φ is true for all x1, . . . , xn in F
it is true in particular for those x1, . . . , xn which fall in any subring, hence it is satisfied
by any integral domain. Since the sentence is positive universal, it is preserved under any
homomorphism2. Hence it is also true for any commutative ring, by the first claim. �

Consider for instance, the Cayley-Hamilton Theorem. For fields F , this says that any
square matrix over F satisfies its own characteristic polynomial. That is, for any A ∈
Matn(F ), χA(A) = 0, consider χA(x), the characteristic polynomial of A given by

χA(x) = det(xIn − A)

where In is the n× n identity matrix. Then, writing

χA(x) = Σn
i=0kix

i

we have that
Σn

i=0kiA
i = 0

where A0 = In
To see that this statement is positive universal, note that for any n × n matrix A the

statement χA(A) = 0 amounts to a conjunction of n2 equations, all of which are of the form
”this sum of products of entries of A = 0”, which is a positive statement. In general then, the
Cayley-Hamilton Theorem says that for any choice of n2 elements of the field F , a certain
family of n2 equations hold true.

We illustrate this in the case of 2× 2 matrices over a field F . Suppose

A =

[
a b
c d

]
2See Model Theory by Chang and Keisler, corollary 3.2.5
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where a, b, c, d ∈ F . Then det(xIn − A) = (x − a)(x − d) − bc = x2 − (a + d)x + (ad − bc).
Hence, Cayley-Hamilton is the claim that A2 − (a+ d)A+ (ad− bc)I2 = 0. Since

A2 =

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
this amounts to statements a2 + bc − (a + d)a + (ad − bc) = 0, ab + bd − (a + d)b = 0,
ac + cd − (a + d)c = 0, and bc + d2 − (a + d)d + (ad − bc) = 0. So the Cayley-Hamilton
Theorem for 2× 2 matrices of a field F is exactly the formal sentence

(∀a)(∀b)(∀c)(∀d)

((a2 + bc− (a+ d)a+ (ad− bc) = 0)

∧ (ab+ bd− (a+ d)b = 0)

∧ (ac+ cd− (a+ d)c = 0)

∧ (bc+ d2 − (a+ d)d+ (ad− bc) = 0)).
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