Problem 7.

(a) Show that if $\left(P_{i}\right)_{i \in I}$ is a chain of primes, then $\bigcup_{i \in I} P_{i}$ and $\bigcap_{i \in I} P_{i}$ are primes.
(b) Show that if I is an ideal contained in a prime P, then there is a prime ideal P^{\prime} such that $I \subseteq P^{\prime} \subseteq P$ and P^{\prime} is "minimal over I ".
(c) Show that if I is an ideal containing a prime P, then there is a prime ideal P^{\prime} such that $P \subseteq P^{\prime} \subseteq I$ and P^{\prime} is "maximal under I^{\prime} ".

Theorem 1. Let $\left(P_{i}\right)_{i \in I}$ be a chain of primes, then $\bigcup_{i \in I} P_{i}$ and $\bigcap_{i \in I} P_{i}$ are primes.
Proof.
$\bigcup_{i \in I} P_{i}$ is prime: We first show that $\bigcup_{i \in I} P_{i}$ is an ideal. Suppose $a, b \in \bigcup_{i \in I} P_{i}$, then there are i_{0} and i_{1} such that $a \in P_{i_{0}}$ and $b \in P_{i_{1}}$. The collection of P_{i} form a chain, so we may assume without loss of generality that $P_{i_{0}} \subseteq P_{i_{1}}$. That is, $a, b \in P_{i_{1}}$. Since $P_{i_{1}}$ is an ideal then $a+b \in P_{i_{1}} \subseteq \bigcup_{i \in I} P_{i}$ and $r a \in P_{i_{1}} \subseteq \bigcup_{i \in I} P_{i}$ for all $r \in R$.

If $a b \in \bigcup_{i \in I} P_{i}$, then there exists i_{0} such that $a b \in P_{i_{0}}$. Since $P_{i_{0}}$ is a prime, then either a or b is in $P_{i_{0}}$, so a or b is in $\bigcup_{i \in I} P_{i}$.
$\bigcap_{i \in I} P_{i}$ is prime: Suppose $a, b \in \bigcap_{i \in I} P_{i}$, then for all $i \in I, a, b \in P_{i}$. Each P_{i} is an ideal, so $a+b \in P_{i}$ and $r a \in P_{i}$ for all $r \in R$ and $i \in I$. It follows that $a+b \in \bigcap_{i \in I} P_{i}$ and $r a \in \bigcap_{i \in I} P_{i}$.

Suppose $a b \in \bigcap_{i \in I} P_{i}$. If a and b are in P_{i} for all i, then a and b will also be $\bigcap_{i \in I} P_{i}$. If not, then without loss of generality suppose there exists i_{0} such that $b \notin P_{i_{0}}$. Then, $a \in P_{i_{0}}$ and clearly $a \in P_{i_{1}}$ for any $i_{1} \in I$ such that $P_{i_{0}} \subseteq P_{i_{1}}$. On the other hand, if $P_{i_{1}} \subseteq P_{i_{0}}$, suppose for contradiction that $a \notin P_{i_{1}}$. Then $b \in P_{i_{1}}$ because $P_{i_{1}}$ is prime, but this contradicts that $P_{i_{1}} \subseteq P_{i_{0}}$. It follows that $a \in P_{i}$ for all $i \in I$ so $a \in \bigcap_{i \in I} P_{i}$.

Definition 1. Let I be an ideal. A prime P^{\prime} containing I is called minimal over I if there does not exists another prime P containing I such that $I \subseteq P \subsetneq P^{\prime}$. A prime P^{\prime} contained in I is called maximal under I if there does not exist another prime P contained within I satisfying $P^{\prime} \subsetneq P \subseteq I$.

Corollary 1. Let I be an ideal and P be a prime containing I. Then there exists a prime P^{\prime} contained in P that is minimal over I.

Proof. Consider $\mathcal{C}=\{Q$ prime ideal : $I \subseteq Q \subseteq P\}$, with the partial ordering $P \preceq Q$ if $Q \subseteq P$. Observe that \mathcal{C} is nonempty because $P \in \mathcal{C}$. Let $\left\{P_{i}\right\}_{i \in I}$ be a chain, and let $\tilde{P}=\bigcap_{i \in I} P_{i}$. Clearly, $I \subseteq \tilde{P} \subseteq P_{i} \subseteq P$ for all i. Then by Proposition $1 \tilde{P}$ is prime. That is, \tilde{P} is an upper bound for this chain. Zorn's lemma then guarantees a maximal element P^{\prime} with respect to this ordering. That is, there are no prime Q satisfies $I \subseteq Q \subsetneq P^{\prime}$.

Corollary 2. Let I be an ideal and P be a prime contained in I. Then there exists a prime P^{\prime} containing P that is maximal under I.

Proof. Define $\mathcal{C}=\{Q$ prime ideal : $P \subseteq Q \subseteq I\}$ with the ordering $P \preceq Q$ if $P \subseteq Q$. Again, \mathcal{C} is nonempty because $P \in \mathcal{C}$. For any chain $\left\{P_{i}\right\}_{i \in I}$ define $\tilde{P}=\bigcup_{i \in I} P_{i}$. Since $P \subseteq P_{i} \subseteq I$ for all i, then $P \subseteq \tilde{P} \subseteq I$. Furthermore, \tilde{P} is prime by Proposition 1 so \tilde{P} is an upper bound for this chain. By Zorn's lemma, the is a prime P^{\prime} maximal with respect to this ordering. That is, there are no primes Q which satisfies $P^{\prime} \subsetneq Q \subseteq I$.

