6. Let I be a minimal nonzero ideal of the commutative ring R.
(a) Show that $(0: I)$ is a maximal ideal.
(b) Show that if $I^{2}=I$, then K is a complement to I and $R \cong R / I \times R / K$.

Proof.

(a) For brevity, let $K=(0: I)$. We consider two cases. I^{2} is an ideal contained in I, so it is either equal to I itself or is equal to the zero ideal.
Consider the case where I squares to itself. Choose nonzero $a \in I .(a) \subseteq I$ is nonzero so it must equal I. Since $\left(a^{2}\right)=(a)^{2}=I^{2}=I$, it follows that a^{2} also generates $I=(a)$ and therefore there must be some $r \in R$ such that $r a^{2}=a$. We know $r \notin K$ for otherwise $r\left(a^{2}\right)=0 \neq(a)$. In particular, we have $r a^{2} \neq 0$. Multiplying by r yields $r^{2} a^{2}=r a$ and $r a \neq 0$ for otherwise $r \in K$. Let $e=r a$ and write $I=(e)$. Notice that $e^{2}=\operatorname{rara}=r^{2} a^{2}=r a=e$. So e is an idempotent element. If $e(1-e)=e-e^{2}=e-e=0$, then $(1-e)$ annhilates e. This shows that the ideal $(1-e)$ is contained in K. The ideals (e) and $(1-e)$ are complementary (the sum of generators generates R). Since $(e)=I$ is a minimal ideal of R, and the complement of a minimal element of a modular lattice is a maximal element, it follows that ($1-e$) is a maximal ideal of R. Since K is an ideal containing a maximal ideal, and $1 \notin K$ $(1 I=I)$, it follows from maximality that $K=(1-e)$, which is a maximal ideal.
Consider the case where $I^{2}=(0)$. By minimality, I is generated by any one of its nonzero elements. For if $a \in I$, then $(a) \subseteq I$ and since a is nonzero, $(a)=I$. We know by applying the First Isomorphism Theorem for Modules to the R-module homomorphism $\phi: R \mapsto(a), \phi(r)=r a$ that $R / \operatorname{Ann}_{R}(a) \cong(a)$. Then we have $R / K \cong I$ as R modules. Since (a) is a minimal ideal, it is simple as an R-module. Therefore R / K is simple, so by the Correspondence Theorem K is a maximal ideal of R.
(b) We have already shown that if $I^{2}=I$ we have that K is a complement to K. By the Chinese Remainder Theorem, $R \cong R /(0) \cong R / I \times R / K$. See also the solution to calg1p3(d).

