- 6. Let I be a minimal nonzero ideal of the commutative ring R.
- (a) Show that (0:I) is a maximal ideal.
- (b) Show that if $I^2 = I$, then K is a complement to I and $R \cong R/I \times R/K$.

Proof.

- (a) For brevity, let K = (0:I). We consider two cases. I^2 is an ideal contained in I, so it is either equal to I itself or is equal to the zero ideal.
 - Consider the case where I squares to itself. Choose nonzero $a \in I$. $(a) \subseteq I$ is nonzero so it must equal I. Since $(a^2) = (a)^2 = I^2 = I$, it follows that a^2 also generates I = (a) and therefore there must be some $r \in R$ such that $ra^2 = a$. We know $r \notin K$ for otherwise $r(a^2) = 0 \neq (a)$. In particular, we have $ra^2 \neq 0$. Multiplying by r yields $r^2a^2 = ra$ and $ra \neq 0$ for otherwise $r \in K$. Let e = ra and write I = (e). Notice that $e^2 = rara = r^2a^2 = ra = e$. So e is an idempotent element. If $e(1-e) = e - e^2 = e - e = 0$, then (1-e) annhilates e. This shows that the ideal (1-e) is contained in K. The ideals (e) and (1-e) are complementary (the sum of generators generates R). Since (e) = I is a minimal ideal of R, and the complement of a minimal element of a modular lattice is a maximal element, it follows that (1-e)is a maximal ideal of R. Since K is an ideal containing a maximal ideal, and $1 \notin K$ (1I = I), it follows from maximality that K = (1-e), which is a maximal ideal.

Consider the case where $I^2 = (0)$. By minimality, I is generated by any one of its nonzero elements. For if $a \in I$, then $(a) \subseteq I$ and since a is nonzero, (a) = I. We know by applying the First Isomorphism Theorem for Modules to the R-module homomorphism $\phi : R \mapsto (a), \phi(r) = ra$ that $R / \operatorname{Ann}_R(a) \cong (a)$. Then we have $R/K \cong I$ as Rmodules. Since (a) is a minimal ideal, it is simple as an R-module. Therefore R/K is simple, so by the Correspondence Theorem K is a maximal ideal of R. \Box

(b) We have already shown that if $I^2 = I$ we have that K is a complement to K. By the Chinese Remainder Theorem, $R \cong R/(0) \cong R/I \times R/K$. See also the solution to calg1p3(d).