COMMUTATIVE ALGEBRA HOMEWORK 1

CHASE MEADORS, MICHAEL LEVET, BOB KUO

Problem (4). Show that the ideals of $R \times S$ are of the form $I \times J$ where $I \triangleleft R$ and $J \triangleleft S$. Show that the prime (maximal) ideals have the form $P \times S$ and $R \times Q$ for prime (maximal) ideals $P \triangleleft R$ and $Q \triangleleft S$.

Lemma. If $f: R \rightarrow S$ is surjective, then f takes ideals of R to ideals of S.
Proof. It's clear that $f(I)$ is an additive subgroup, and surjectivity gives $S f(I)=$ $f(R) f(I)=f(R I)=f(I)$ so $f(I)$ is an ideal.

Claim. Ideals of $R \times S$ are products of ideals of R and S.
Proof. It's clear that products of ideals are ideals of the product. Conversely, let K be an ideal of $R \times S$ and π_{R}, π_{S} denote the canonical projections. We have by the lemma that $\pi_{R}(K)$ and $\pi_{S}(K)$ are ideals of R and S, respectively. Of course $K \subseteq \pi_{R}(K) \times \pi_{S}(K)$. For the other direction, if $(r, s) \in \pi_{R}(K) \times \pi_{S}(K)$ then r is the image of some $\left(r, s^{\prime}\right) \in K$ and s is the image of some $\left(r^{\prime}, s\right) \in K$. Then $\left(r, s^{\prime}\right)(1,0)+\left(r^{\prime}, s\right)(0,1)=(r, s)$ must be in K as well. Hence $K=\pi_{R}(K) \times \pi_{S}(K)$.

Claim. The maximal ideals of $R \times S$ are either $P \times S$ for maximal ideals P of R or $R \times Q$ for maximal ideals Q of S.

Proof. Again it's straightforward that $P \times R$ for maximal $P<R$ is maximal in $R \times S$ (the only proper ideals above it must be $P^{\prime} \times R$ for $P<P^{\prime}<R$, contradicting the maximality of P), and similarly for $R \times Q$

Conversely, let $K=I \times J$ be a proper ideal of $R \times S$. If both $I<R$ and $J<S$, then $R \times J$ and $I \times S$ are strictly between K and $R \times S$, and K is not maximal. So suppose without loss of generality that $J=S$ but I is not maximal in R, say $I<I^{\prime}<R$, then $K<I^{\prime} \times S<R \times S$, and again K is not maximal. Hence if K is maximal it must have one of the two forms described.

Claim. A prime ideal of $R \times S$ is either $P \times S$ for a prime ideal P of R or $R \times Q$ for a prime ideal Q of S.

Proof. Consider the ideal $K=P \times S$ for P prime in R and suppose $(a, b)\left(a^{\prime}, b^{\prime}\right) \in P \times S$. Then in particular $a a^{\prime} \in P$ and either $a \in P$ (and $(a, b) \in K$) or $a^{\prime} \in P$ (and $\left.\left(a^{\prime}, b^{\prime}\right) \in K\right)$. So ideals of the form described are prime.

Conversely, suppose $K=I \times J$ is prime. If both $I<R$ and $J<S$, then in particular neither of them contain 1 . Then take $a \in I, b \in J$, and note that $(a, 1) \notin K$ and $(1, b) \notin K$ but $(a, 1)(1, b)=(a, b) \in K$, and K is not prime. So suppose without loss of generality that $J=S$ but I is not prime, then we have an $a b \in I$ with $a, b \notin I$. Hence $(a, 1)(b, 1)=(a b, 1) \in K$ with neither factor in K, and K is not prime. Hence any prime ideal must have one of the two forms described.

