3.

(a) Show that a ring R is directly decomposable as a ring if and only if it is directly decomposable when considered as an R-module. (Directly decomposable means a product of two nonzero factors.)
(b) Show that an R-module M is directly decomposable if and only if it has an idempotent endomorphism $\varepsilon: M \rightarrow M$ such that $\operatorname{ker}(\varepsilon) \neq 0 \neq \operatorname{im}(\varepsilon)$.
(c) Show that the R-module endomorphisms of ${ }_{R} R$ all have the form $\varepsilon(x)=r x$ for some $r \in R$.
(d) Show that any direct decomposition of R has the form $R \cong R /(e) \times R /(1-e)$ for some idempotent $e \in R$.

Proof:
(a) (\Rightarrow) Suppose that R is directly decomposable as a ring, i.e., R is a direct product of nonzero rings $R \cong R_{1} \times R_{2}$. Let $I_{1}=R_{1} \times 0$ and $I_{2}=0 \times R_{2}$. We claim that each I_{i} is an ideal of R, and that this is actually a direct decomposition of R as an R-module.
We show that I_{1} is an ideal, and the proof for I_{2} is exactly the same. First, clearly $(0,0) \in I_{1}$. The proof that I_{1} is an abelian group under addition follows from the fact that addition in a direct product is componentwise, and R_{1} is an abelian group under addition (as it is a ring). Now let $\left(r_{1}, r_{2}\right) \in R$ and $\left(i_{1}, 0\right) \in I_{1}$. Then $\left(r_{1}, r_{2}\right)\left(i_{1}, 0\right)=$ $\left(r_{1} i_{1}, 0\right) \in I_{1}$. Thus I_{1} is an ideal.
Now since I_{1} and I_{2} are ideals, which are submodules of R (viewed as an R-module), we see that $R \cong I_{1} \oplus I_{2}$ is a decomposition of R as an R-module.
(\Leftarrow) Suppose that R is directly decomposable as an R-module, $R \cong I_{1} \oplus I_{2}$, where $I_{1}, I_{2} \subseteq R$ are ideals (submodules). We have

$$
\begin{aligned}
& I_{1} \cong I_{1} \oplus 0 \cong\left(I_{1} \oplus I_{2}\right) /\left(0 \oplus I_{2}\right) \cong R /\left(0 \oplus I_{2}\right) \cong R / I_{2} \\
& I_{2} \cong 0 \oplus I_{2} \cong\left(I_{1} \oplus I_{2}\right) /\left(I_{1} \oplus 0\right) \cong R /\left(I_{1} \oplus 0\right) \cong R / I_{1}
\end{aligned}
$$

so we see that $R \cong R / I_{2} \times R / I_{1}$ is a decomposition of R as a ring.
(b) (\Rightarrow) Suppose $M \cong M_{1} \oplus M_{2}$, with $M_{i} \neq 0$ for each i. The category of R-modules is abelian, so finite products have the structure of a biproduct. Thus M will come with canonical projections and inclusions, $p_{j}: M \rightarrow M_{j}$ and $\iota_{j}: M_{j} \rightarrow M$. Define $\varepsilon: M \rightarrow M$ by $\varepsilon=\iota_{1} \circ p_{1}$. Specifically, ε acts by

$$
\varepsilon\left(m_{1}, m_{2}\right)=\iota_{1}\left(p_{1}\left(m_{1}, m_{2}\right)\right)=\iota_{1}\left(m_{1}\right)=\left(m_{1}, 0\right) .
$$

First, $\operatorname{ker}(\varepsilon) \neq 0$, since any $\left(0, m_{2}\right)$ will be in the kernel, so we can take $m_{2} \neq 0$. Next, $\operatorname{im}(\varepsilon) \neq 0$, since any nonzero m_{1} will give a nonzero element in the image: $\varepsilon\left(m_{1}, m_{2}\right)=\left(m_{1}, 0\right) \neq 0$.

Finally, we show that ε is idempotent. We check this directly:

$$
\varepsilon\left(\varepsilon\left(m_{1}, m_{2}\right)\right)=\varepsilon\left(m_{1}, 0\right)=\left(m_{1}, 0\right)=\varepsilon\left(m_{1}, m_{2}\right) .
$$

Hence $\varepsilon \circ \varepsilon=\varepsilon$, so ε is idempotent.
(\Leftarrow) Given such an $\varepsilon: M \rightarrow M$, we first note that $1-\varepsilon: M \rightarrow M$ is also an endomorphism (where $1-\varepsilon$ means $\operatorname{id}_{M}-\varepsilon$). Now $\operatorname{im}(\varepsilon) \neq 0$ by assumption. On the other hand, if $\operatorname{im}(1-\varepsilon)=0$, then we must have $\varepsilon=\operatorname{id}_{M}$, but this is impossible, since $\operatorname{ker}(\varepsilon) \neq 0$. Thus $\operatorname{im}(1-\varepsilon) \neq 0$. We show that $M \cong \operatorname{im}(\varepsilon) \oplus \operatorname{im}(1-\varepsilon)$ (note that this is the same as a kernel-image decomposition, $M \cong \operatorname{im}(\varepsilon) \oplus \operatorname{ker}(\varepsilon))$.
Let $m \in M$. Then we have $m=\varepsilon(m)+(1-\varepsilon)(m)$, so every element of M can be written as a sum of elements from $\operatorname{im}(\varepsilon)$ and $\operatorname{im}(1-\varepsilon)$. Now we show that $\operatorname{im}(\varepsilon) \cap \operatorname{im}(1-\varepsilon)=0$, which will complete the proof (this is a characterization of direct sums). Suppose $m \in \operatorname{im}(\varepsilon) \cap \operatorname{im}(1-\varepsilon)$. Then there are some $n, n^{\prime} \in M$ such that

$$
m=\varepsilon(n)=(1-\varepsilon)\left(n^{\prime}\right) .
$$

Since ε is idempotent, we see that

$$
m=\varepsilon(n)=\varepsilon(\varepsilon(n))=\varepsilon\left((1-\varepsilon)\left(n^{\prime}\right)\right)=\varepsilon\left(n^{\prime}-\varepsilon\left(n^{\prime}\right)\right)=\varepsilon\left(n^{\prime}\right)-\varepsilon\left(n^{\prime}\right)=0,
$$

so $m=0$, as desired. Hence $M \cong \operatorname{im}(\varepsilon) \oplus \operatorname{im}(1-\varepsilon)$.
(c) First, we show that such a map is actually an endomorphism of ${ }_{R} R$. Let $x, y \in R$. Then

$$
\begin{gathered}
\varepsilon(x+y)=r(x+y)=r x+r y=\varepsilon(x)+\varepsilon(y) \\
\varepsilon(x y)=r(x y)=x(r y)=x \varepsilon(y)
\end{gathered}
$$

so the map is an endomorphism.
Now let $\pi: R \rightarrow R$ be any endomorphism (of ${ }_{R} R$), and let $r=\pi(1)$. Then for any $x \in R$, we have

$$
\pi(x)=\pi(x \cdot 1)=x \pi(1)=x r=r x .
$$

Therefore, any such endomorphism of ${ }_{R} R$ has the desired form.
(d) From part (a), any decomposition of R as a ring is the same as a decomposition as an R-module, so we can use the results of parts (b) and (c) on decompositions of R-modules.

From part (b), any such decomposition must arise from an idempotent endomorphism $\varepsilon: R \rightarrow R$ (an R-module endomorphism). From part (c), this endomorphism must have the form $\varepsilon(x)=e x$ for some $e \in R$. This e must be idempotent, as

$$
e=\varepsilon(1)=\varepsilon(\varepsilon(1))=\varepsilon(e)=e^{2}
$$

From our proof of part (b), this means that $R \cong \operatorname{im}(\varepsilon) \times \operatorname{im}(1-\varepsilon)$. From the first isomorphism theorem, we know that $\operatorname{im}(\varepsilon) \cong R / \operatorname{ker}(\varepsilon)$ and $\operatorname{im}(1-\varepsilon) \cong R / \operatorname{ker}(1-\varepsilon)$. Thus we need only show that $\operatorname{ker}(\varepsilon)=(1-e)$ and $\operatorname{ker}(1-\varepsilon)=(e)$, then we are done.

We know that $(1-e) \subseteq \operatorname{ker}(\varepsilon)$, since $\varepsilon(1-e)=e(1-e)=e-e=0$, and kernels are ideals. Now let $r \in \operatorname{ker}(\varepsilon)$, so $e r=0$. Then we also have $-e r=0$. Adding r to both sides, we get $r(1-e)=r-r e=r-e r=r$, so $r \in(1-e)$. Thus $(1-e)=\operatorname{ker}(\varepsilon)$. Similarly, we know that $(e) \subseteq \operatorname{ker}(1-\varepsilon)$, since $(1-\varepsilon)(e)=e-\varepsilon(e)=e-e=0$. Now let $r \in \operatorname{ker}(1-\varepsilon)$, so $r-e r=0$. Then we can add er to both sides to get $r=e r=r e$, so $r \in(e)$. Thus $(e)=\operatorname{ker}(1-\varepsilon)$. Hence $R \cong R /(e) \times R /(1-e)$, as desired.

