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3.

(a) Show that a ring R is directly decomposable as a ring if and only if it is directly
decomposable when considered as an R-module. (Directly decomposable means a
product of two nonzero factors.)

(b) Show that an R-module M is directly decomposable if and only if it has an idempotent
endomorphism ε : M →M such that ker(ε) 6= 0 6= im(ε).

(c) Show that the R-module endomorphisms of RR all have the form ε(x) = rx for some
r ∈ R.

(d) Show that any direct decomposition of R has the form R∼=R/(e)×R/(1− e) for some
idempotent e ∈ R.

Proof:

(a) (⇒) Suppose that R is directly decomposable as a ring, i.e., R is a direct product of
nonzero rings R∼=R1×R2. Let I1 = R1× 0 and I2 = 0×R2. We claim that each Ii is
an ideal of R, and that this is actually a direct decomposition of R as an R-module.

We show that I1 is an ideal, and the proof for I2 is exactly the same. First, clearly
(0, 0) ∈ I1. The proof that I1 is an abelian group under addition follows from the fact
that addition in a direct product is componentwise, and R1 is an abelian group under
addition (as it is a ring). Now let (r1, r2) ∈ R and (i1, 0) ∈ I1. Then (r1, r2)(i1, 0) =
(r1i1, 0) ∈ I1. Thus I1 is an ideal.

Now since I1 and I2 are ideals, which are submodules of R (viewed as an R-module),
we see that R∼= I1 ⊕ I2 is a decomposition of R as an R-module.

(⇐) Suppose that R is directly decomposable as an R-module, R∼= I1 ⊕ I2, where
I1, I2⊆R are ideals (submodules). We have

I1∼= I1 ⊕ 0∼=(I1 ⊕ I2)/(0⊕ I2)∼=R/(0⊕ I2)∼=R/I2

I2∼= 0⊕ I2∼=(I1 ⊕ I2)/(I1 ⊕ 0)∼=R/(I1 ⊕ 0)∼=R/I1,

so we see that R∼=R/I2 ×R/I1 is a decomposition of R as a ring.

(b) (⇒) Suppose M ∼=M1 ⊕ M2, with Mi 6= 0 for each i. The category of R-modules
is abelian, so finite products have the structure of a biproduct. Thus M will come
with canonical projections and inclusions, pj : M → Mj and ιj : Mj → M . Define
ε : M →M by ε = ι1 ◦ p1. Specifically, ε acts by

ε(m1,m2) = ι1(p1(m1,m2)) = ι1(m1) = (m1, 0).

First, ker(ε) 6= 0, since any (0,m2) will be in the kernel, so we can take m2 6= 0.
Next, im(ε) 6= 0, since any nonzero m1 will give a nonzero element in the image:
ε(m1,m2) = (m1, 0) 6= 0.
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Finally, we show that ε is idempotent. We check this directly:

ε(ε(m1,m2)) = ε(m1, 0) = (m1, 0) = ε(m1,m2).

Hence ε ◦ ε = ε, so ε is idempotent.

(⇐) Given such an ε : M → M , we first note that 1 − ε : M → M is also an
endomorphism (where 1 − ε means idM −ε). Now im(ε) 6= 0 by assumption. On the
other hand, if im(1− ε) = 0, then we must have ε = idM , but this is impossible, since
ker(ε) 6= 0. Thus im(1− ε) 6= 0. We show that M ∼= im(ε)⊕ im(1− ε) (note that this
is the same as a kernel-image decomposition, M ∼= im(ε)⊕ ker(ε)).

Let m ∈M . Then we have m = ε(m)+(1−ε)(m), so every element of M can be written
as a sum of elements from im(ε) and im(1−ε). Now we show that im(ε)∩im(1−ε) = 0,
which will complete the proof (this is a characterization of direct sums). Suppose
m ∈ im(ε) ∩ im(1− ε). Then there are some n, n′ ∈M such that

m = ε(n) = (1− ε)(n′).

Since ε is idempotent, we see that

m = ε(n) = ε(ε(n)) = ε((1− ε)(n′)) = ε(n′ − ε(n′)) = ε(n′)− ε(n′) = 0,

so m = 0, as desired. Hence M ∼= im(ε)⊕ im(1− ε).

(c) First, we show that such a map is actually an endomorphism of RR. Let x, y ∈ R.
Then

ε(x+ y) = r(x+ y) = rx+ ry = ε(x) + ε(y)

ε(xy) = r(xy) = x(ry) = xε(y)

so the map is an endomorphism.

Now let π : R → R be any endomorphism (of RR), and let r = π(1). Then for any
x ∈ R, we have

π(x) = π(x · 1) = xπ(1) = xr = rx.

Therefore, any such endomorphism of RR has the desired form.

(d) From part (a), any decomposition of R as a ring is the same as a decomposition as
an R-module, so we can use the results of parts (b) and (c) on decompositions of
R-modules.

From part (b), any such decomposition must arise from an idempotent endomorphism
ε : R → R (an R-module endomorphism). From part (c), this endomorphism must
have the form ε(x) = ex for some e ∈ R. This e must be idempotent, as

e = ε(1) = ε(ε(1)) = ε(e) = e2.

From our proof of part (b), this means that R∼= im(ε) × im(1 − ε). From the first
isomorphism theorem, we know that im(ε)∼=R/ ker(ε) and im(1− ε)∼=R/ ker(1− ε).
Thus we need only show that ker(ε) = (1− e) and ker(1− ε) = (e), then we are done.
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We know that (1− e)⊆ ker(ε), since ε(1− e) = e(1− e) = e− e = 0, and kernels are
ideals. Now let r ∈ ker(ε), so er = 0. Then we also have −er = 0. Adding r to both
sides, we get r(1− e) = r − re = r − er = r, so r ∈ (1− e). Thus (1− e) = ker(ε).

Similarly, we know that (e)⊆ ker(1− ε), since (1− ε)(e) = e− ε(e) = e− e = 0. Now
let r ∈ ker(1− ε), so r− er = 0. Then we can add er to both sides to get r = er = re,
so r ∈ (e). Thus (e) = ker(1− ε). Hence R∼=R/(e)×R/(1− e), as desired.
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