Commutative Algebra Connor Meredith

Assignment 1 Mateo Muro
Problem 3 Adrian Neff
3.

(a) Show that a ring R is directly decomposable as a ring if and only if it is directly
decomposable when considered as an R-module. (Directly decomposable means a
product of two nonzero factors.)

(b) Show that an R-module M is directly decomposable if and only if it has an idempotent
endomorphism € : M — M such that ker(e) # 0 # im(e).

(c) Show that the R-module endomorphisms of grR all have the form (z) = ra for some
r e R.

(d) Show that any direct decomposition of R has the form R= R/(e) x R/(1 —e) for some
idempotent e € R.

Proof:

(a) (=) Suppose that R is directly decomposable as a ring, i.e., R is a direct product of
nonzero rings R= Ry X Ry. Let I; = Ry x 0 and I, = 0 x Ry. We claim that each [; is
an ideal of R, and that this is actually a direct decomposition of R as an R-module.

We show that [; is an ideal, and the proof for Iy is exactly the same. First, clearly
(0,0) € I;. The proof that I; is an abelian group under addition follows from the fact
that addition in a direct product is componentwise, and R; is an abelian group under
addition (as it is a ring). Now let (ry,72) € R and (i1,0) € ;. Then (rq,79)(i1,0) =
(r141,0) € I;. Thus I is an ideal.

Now since I; and I are ideals, which are submodules of R (viewed as an R-module),
we see that R=1; @ I, is a decomposition of R as an R-module.

(<) Suppose that R is directly decomposable as an R-module, R} @ I5, where
I, I, C R are ideals (submodules). We have

LeLo0=2(Leh)/(0®L)2R/(00 L) =R/,
L=0eL=Lel)/(1®0)=R/(I,®0)=R/I,
so we see that R= R/, x R/I is a decomposition of R as a ring.

(b) (=) Suppose M = M; & M,, with M; # 0 for each i. The category of R-modules
is abelian, so finite products have the structure of a biproduct. Thus M will come
with canonical projections and inclusions, p; : M — M, and ¢; : M; — M. Define
€: M — M by e =11 o py. Specifically, € acts by

e(my,ma) = t1(p1(my, ma)) = t1(my) = (my,0).

First, ker(e) # 0, since any (0,m2) will be in the kernel, so we can take my # 0.
Next, im(g) # 0, since any nonzero m; will give a nonzero element in the image:
€(m17m2) = (mlao) # 0



Commutative Algebra Connor Meredith
Assignment 1 Mateo Muro
Problem 3 Adrian Neff

Finally, we show that ¢ is idempotent. We check this directly:
e(e(my,mg)) = e(my,0) = (mq,0) = e(my, my).
Hence € o € = ¢, so ¢ is idempotent.

(<) Given such an ¢ : M — M, we first note that 1 —¢ : M — M is also an
endomorphism (where 1 — ¢ means idy, —¢). Now im(e) # 0 by assumption. On the
other hand, if im(1 — &) = 0, then we must have € = id,;, but this is impossible, since
ker(e) # 0. Thus im(1 —¢) # 0. We show that M =im(e) @ im(1 — ¢) (note that this

)

is the same as a kernel-image decomposition, M =im(e) @ ker(e)).

Let m € M. Then we have m = g(m)+(1—¢)(m), so every element of M can be written
as a sum of elements from im(e) and im(1—¢). Now we show that im(e)Nim(1—¢) = 0,
which will complete the proof (this is a characterization of direct sums). Suppose
m € im(e) Nim(1 — £). Then there are some n,n’ € M such that

m=¢e(n)=(1-e¢)n).
Since ¢ is idempotent, we see that
m = ¢g(n) =¢e(e(n)) = (1 —e)(n')) = e(n’ —e(n)) = e(n’) —e(n) =0,
so m = 0, as desired. Hence M Zim(e) & im(1 — ¢).

First, we show that such a map is actually an endomorphism of rpR. Let z,y € R.
Then
e(xty)=r(x+y)=re+ry=c(x)+ely)

e(zy) = r(zy) = x(ry) = ve(y)
so the map is an endomorphism.

Now let 7 : R — R be any endomorphism (of zR), and let »r = 7(1). Then for any
xr € R, we have
m(x) =m(x-1) =2an(l) = xr = rz.

Therefore, any such endomorphism of zR has the desired form.
From part (a), any decomposition of R as a ring is the same as a decomposition as

an R-module, so we can use the results of parts (b) and (c) on decompositions of
R-modules.

From part (b), any such decomposition must arise from an idempotent endomorphism
e : R — R (an R-module endomorphism). From part (c), this endomorphism must
have the form e(z) = ex for some e € R. This e must be idempotent, as

e=¢(1) =e(e(1)) = c(e) = €.

From our proof of part (b), this means that R=im(e) x im(1 — ¢). From the first
isomorphism theorem, we know that im(e) = R/ ker(¢) and im(1 —¢) = R/ ker(1 — ¢).
Thus we need only show that ker(¢) = (1 — e) and ker(1 —¢) = (e), then we are done.
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We know that (1 —e) Cker(e), since ¢(1 —e) = e(l —e) = e —e = 0, and kernels are
ideals. Now let r € ker(e), so er = 0. Then we also have —er = 0. Adding r to both
sides, we get (1l —e) =r—re=r—er=r,sor € (1 —e). Thus (1 —e) = ker(e).
Similarly, we know that (e) Cker(1 —¢), since (1 —¢)(e) =e —c(e) =e —e =0. Now
let r € ker(1 —¢), so r —er = 0. Then we can add er to both sides to get r = er = re,
sor € (e). Thus (e) = ker(1 —¢). Hence R= R/(e) x R/(1 — e), as desired.
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