Commutative Algebra- HW1

Bob Kuo, Michael Levet, Chase Meadors

Problem 1. Let k be a field. Describe the ideal lattices of the following rings; and in each case, specify which ideals are maximal or prime.

(a) k[x].

- (b) k[[x]], the ring of formal power series over k.
- (c) k((x)), the ring of formal Laurent series over k.

Remark 1. We recall from standard Algebra texts that k[x] is a PID. So the ideals of k[x] are precisely of the form (p(x)), where $p(x) \in k[x]$. Now for $p(x), q(x) \in k[x]$, we have that $(q(x)) \subset (p(x))$ if and only if p(x) divides q(x).

We recall the following from the first-year Algebra sequence.

Lemma 2. Let k be a field, and consider k[x]. Let $p(x) \neq 0$ be an element of k[x]. The following are equivalent.

- (a) p(x) is irreducible.
- (b) (p(x)) is maximal.
- (c) (p(x)) is prime.

Proof. We first establish the equivalence of (a) and (b). Consider the ideal I = (p(x)) of k[x]. As $p(x) \neq 0$, we have that $I \neq (0)$. We recall from standard Algebra texts that k[x]/I is a field if and only if p(x) is irreducible. By the characterization of maximal ideals, we have that I is maximal if and only if k[x]/I is a field. So I is maximal if and only if p(x) is irreducible.

We now establish the equivalence of (a) and (c). As k[x] is a PID, k[x] is also a UFD. In a UFD R, we have that $f \in R$ is irreducible if and only if (f) is prime. So p(x) is irreducible if and only if (p(x)) is prime. The result follows.

Remark 3. We note that (0) is prime, but not maximal in k[x].

We next analyze the ideal lattice of k[[x]], where k is a field. We begin by establishing the following criterion for identifying units in k[[x]].

Lemma 4. Let R be a commutative ring with identity, and let $p(x) = \sum_{k=0}^{\infty} a_k x^k \in R[[x]]$. We have that p(x) is a unit of R[[x]] if and only if a_k is a unit of R.

Proof. Suppose first that p(x) is a unit of R[[x]], and let $q(x) = \sum_{k=0}^{\infty} b_k x^k$ be the multiplicative inverse of p(x). As $p(x) \cdot q(x) = 1$, we have necessarily that $a_0b_0 = 1$. So $b_0 = a_0^{-1} \in R$. Thus, a_0 is a unit of R.

Conversely, suppose a_0 is a unit of R. Let $q(x) = \sum_{k=0}^{\infty} b_x x^k$ be a potential multiplicative inverse of p(x), where the coefficients of q(x) are yet to be determined. In order for q(x) to be a multiplicative inverse for p(x), it is necessary and sufficient that $p(x) \cdot q(x) = 1$. We note for $i \in \mathbb{N}$, the coefficient of x^i is:

$$\sum_{j=0}^{i} a_j b_{i-j}$$

In order for $p(x) \cdot q(x) = 1$, the coefficient of x^0 must be 1; and for i > 0, the coefficient of x^i must be 0. This yields the following equations:

$$a_0b_0 = 1$$

 $a_0b_1 + a_1b_0 = 0$
 $a_0b_2 + a_1b_1 + a_2b_0 = 0$
 \vdots

Observe that as a_0 is a unit, we have that $b_0 = a_0^{-1}$. Now fix k > 0, we solve for b_k to obtain:

$$b_k = -a_0^{-1} \sum_{i=1}^k a_i b_{k-i}$$

We verify that $q(x) = \sum_{k=0}^{\infty} b^k x^k$ is indeed the inverse of p(x). Observe that:

$$p(x) \cdot q(x) = \left(\sum_{k=0}^{\infty} a_k x^k\right) \cdot \left(\sum_{k=0}^{\infty} b_k x^k\right)$$
$$= \sum_{k=0}^{\infty} x^k \left(\sum_{j=0}^k a_j b_{k-j}\right)$$
$$= 1 + \sum_{k=1}^{\infty} x^k \left(\sum_{j=0}^k a_j b_{k-j}\right)$$

$$= 1 + \sum_{k=1}^{\infty} x^{k} \left(a_{0}b^{k} + \sum_{j=1}^{k} a_{j}b_{i-j} \right)$$

$$= 1 + \sum_{k=1}^{\infty} x^{k} \left(a_{0} \left(-a_{0}^{-1} \sum_{j=1}^{k} a_{j}b_{k-j} \right) + \sum_{j=1}^{k} a_{j}b_{k-j} \right)$$

$$= 1 + \sum_{k=1}^{\infty} x^{k} \left(- \left(\sum_{j=1}^{k} a_{j}b_{k-j} \right) + \sum_{j=1}^{k} a_{j}b_{k-j} \right)$$

$$= 1 + \sum_{k=1}^{\infty} x^{k} \cdot 0$$

$$= 1.$$

The result follows.

Theorem 5. Let k be a field. The proper, non-zero ideals of k[[x]] are precisely of the form (x^i) where $i \in \mathbb{N}$.

Proof. We recall from standard Algebra texts that k[[x]] is a PID. Let I = (p(x)) be an ideal, where $p(x) = \sum_{i=0}^{\infty} a_i x^i$. Let $m \in \mathbb{N}$ be the minimum index such that $a_m \neq 0$. We claim that $I = (x^m)$. Clearly, $x^m | p(x)$. So $I \subset (x^m)$.

Conversely, we have that:

$$p(x) = \sum_{k=0}^{\infty} a_k x^k = x^m \sum_{k=m}^{\infty} a_k x^{k-m}.$$

By the definition of m, we have that $a_m \neq 0$ in p(x). So $a_m \in k^{\times}$. Thus,

$$\sum_{k=m}^{\infty} a_k x^{k-m}$$

is a unit of k[[x]]. So we may write:

$$x^m = p(x) \cdot \left(\sum_{k=m}^{\infty} a_k x^{k-m}\right)^{-1} \in I.$$

It follows that $(x^m) \subset I$. The result follows.

Remark 6. We note that the ideals of k[[x]] form an infinite chain with (0) as the minimum element and k[[x]] as the maximum element. The proper, non-zero ideals satisfy the following condition: $(x^i) \subset (x^j)$ if and only if $i \geq j$. Furthermore, the sole maximal ideal of k[[x]] is (x). In particular, as k[[x]] is a PID, the maximal ideals are precisely the non-zero prime ideals. So (x) is also the sole non-zero prime ideal. For emphasis, we note that (0) is also a prime ideal of k[[x]].

We finally characterize the ideal lattice of k((x)), where k is a field. We begin by showing that k((x)) is also a field here.

Theorem 7. Let k be a field. Then k((x)) is also a field.

Proof. Let K be the field of fractions for k[[x]]. We show that K = k((x)). We first observe that if $p(x) = \sum_{n \in \mathbb{Z}} a_n x^n \in k((x))$ is a non-zero element, we may write $p(x) = x^m \sum_{i=0}^{\infty} a_i x^i$ where $a_i \neq 0$ and $m \in \mathbb{Z}$. We note that $x^m \in K$ and $\sum_{i=0}^{\infty} a_i x^i$ is a unit of k[[x]]. So $p(x) \in K$. Thus, $k((x)) \subset K$. We now argue that k((x)) is a field. Again take $p(x) \in k((x))$ to be non-zero, and write $p(x) = x^m u$ for some $m \in \mathbb{Z}$ and some unit $u \in k[[x]]$. Observe that $(p(x))^{-1} = x^{-m}u^{-1}$. So k((x)) is a field. As K, the field of fractions, is the smallest field into which k[[x]] can be embedded, it follows that k((x)) = K.

This yields the following corollary.

Corollary 8. Let k be a field. The only ideals of k((x)) are (0) and k((x)).

Remark 9. We note that (0) is the unique maximal ideal of k((x)), as well as the unique proper prime ideal of k((x)).