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6.

(a) Prove that if 0→ L→M → N → 0 is exact, then Supp(M) = Supp(L) ∪ Supp(N).

(b) Prove that Supp(L⊗A N) = Supp(L) ∩ Supp(N).

Proof.

(a) Let L,M,N be A modules for some commutative ring A, and let

0 L M N 0
f g

be an exact sequence. Recall that the support of an A module X is the set of all prime
ideals p of A for which the localization of X at p is nonzero. We will show the equivalent
statement that Supp(M)c = Supp(L)c ∩ Supp(N)c, where Supp(X)c is the complement
of Supp(X) in Spec(A), that is, the set of all primes p for which Xp = 0.

We start by showing Supp(M)c ⊆ Supp(L)c ∩ Supp(N)c. Suppose that p ∈ Supp(M)c.
Since localization is an exact functor1 we have that

0 Lp Mp Np 0
fp gp

is also exact. Since we chose p from the complement of the support of M , Mp = 0 so
the sequence reduces to

0 Lp 0 Np 0.
fp gp

Exactness at Lp means that fp is injective and hence ker(fp) = 0. However, Mp = 0
implies that fp is the 0 map, so that ker(fp) = Lp. Hence, Lp = 0 so that p ∈ Supp(L)c.
Similarly, exactness at Np and Mp = 0 implies that Np = 0 so that p ∈ Supp(N)c.
Hence p ∈ Supp(L)c ∩ Supp(N)c.

Now we show Supp(L)c ∩ Supp(N)c ⊆ Supp(M)c. Let p ∈ Supp(L)c ∩ Supp(N)c. Then
Lp = 0 and Np = 0. Exactness of localization again implies that the above sequence of
localizations is exact, however now we have

0 0 Mp 0 0
fp gp

and so as above, exactness at Mp implies that Mp = 0. Hence p ∈ Supp(M)c.

We have shown bicontainment, so we have that Supp(M)c = Supp(L)c∩Supp(N)c, from
which the claim follows.

1Stacks Project, Prop. 10.9.12, https://stacks.math.columbia.edu/tag/00CS.
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(b) Let L and N be A modules for a commutative ring A. First we will show that the
containment Supp(L ⊗A N) ⊆ Supp(L) ∩ Supp(N) holds. However, the containment
Supp(L)∩ Supp(N) ⊆ Supp(L⊗AN) is not true in general and we provide a counterex-
ample. Taking L and N to be finitely generated, we are able to establish the second
containment.

Suppose that p ∈ Supp(L⊗AN). We will use the fact that a prime p is in the support of
an A module X if and only if p contains the annihilator of X. This follows from Stacks
Project Lemma 10.39.52 which shows that V (Ann(X)) = Supp(X). Hence, we have that
Ann(L ⊗A N) ⊆ p. We wish to show p ∈ Supp(L) ∩ Supp(N), and it suffices to show
that Ann(L) ∪ Ann(N) ⊆ p, i.e. that p contains the annihilators of both L and N . If
r ∈ Ann(L), then r·(l⊗n) = r·l⊗n = 0⊗n = 0 for all simple tensors l⊗n ∈ L⊗AN , hence
r ∈ Ann(L⊗AN). Similarly, if r ∈ Ann(N) we have that r annihilates all simple tensors
so that r ∈ Ann(L ⊗A N). So we have that Ann(L) ∪ Ann(N) ⊆ Ann(L ⊗A N) ⊆ p.
Since p contains the annihilators of both L and N , it is in the support of both, so that
p ∈ Supp(L) ∩ Supp(N).

To see that the reverse containment does not hold in general, note the following case.
Take the ring A = Z and the modules L = Q and N = Z/2Z. Then L⊗A N = 0, as for
any simple tensor a

b
⊗ z ∈ L⊗A N we have

a

b
⊗ z = 2(

a

2b
⊗ z) =

a

2b
⊗ 2z =

a

2b
⊗ 0 = 0.

So, it must be that Supp(L⊗AN) = ∅. However, we will show that Supp(L)∩Supp(N) 6=
∅ so that we do not have Supp(L) ∩ Supp(N) ⊆ Supp(L⊗A N).

The annihilator of L as a Z module is the 0 ideal, hence all prime ideals of Z contain
Ann(L) and Supp(L) = Spec(Z). For N , recall from above that p ∈ Supp(N) if and
only if Ann(N) ⊆ p. The Ann(Z/2Z) = 2Z, hence the maximal ideal 2Z is the only
prime in Supp(N). But then, Supp(L) ∩ Supp(N) = {2Z}.
We now take L and N to be finitely generated, and demonstrate in this case that
Supp(L) ∩ Supp(N) ⊆ Supp(L ⊗A N). Take some p ∈ Supp(L) ∩ Supp(N). We will
construct a surjective map from (L⊗AN)p onto a nontrivial module, so that (L⊗AN)p 6=
0 and p ∈ Supp(L⊗A N).

Since p is in the support of both L and N , we have Lp 6= 0 6= Np. Note that both Lp and
Np are thus finitely generated. Note further that since Ap is local, it’s only maximal
ideal is pAp, hence pAp is equal to the Jacobson radical of Ap and in particular is
contained in it. So by Nakayama’s Lemma3 if pLp = Lp, then Lp = 0. However, Lp 6= 0
since p ∈ Supp(L), so we must have that pLp ⊂ Lp is a proper inclusion of submodules.
For the same reasons, pNp is a proper submodule of Np.

Thus, we have that Lp/pLp and Np/pNp are nontrivial vector spaces over the field
k = Ap/pAp. Since these are nontrivial vector spaces, their tensor product (Lp/pLp)⊗k

2https://stacks.math.columbia.edu/tag/00L2
3In particular, see the second conclusion given in the Stacks project at

https://stacks.math.columbia.edu/tag/07RC.
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(Np/pNp) is nontrivial. Now we will construct a surjective homomorphism

(L⊗A N)p → (Lp/pLp)⊗k (Np/pNp).

We will use the fact that localization of a module is isomorphic as an Ap module to
the tensor product with the localization of the ring, by Lemma 10.11.15 of the Stacks
Project4. In particular, it follows from this lemma, the associativity and commutativity
up to isomorphism of the tensor product, and that tensor product with Ap is identity
up to isomorphism that

(L⊗A N)p ∼= L⊗A N ⊗A Ap
∼= (L⊗A Ap)⊗A (N ⊗A Ap) ∼= Lp ⊗A Np.

So, we will equivalently construct a surjective homomorphism with domain Lp ⊗A Np.
Here, we simply take the tensor product of the projection maps onto the quotients, i.e.
we take

π ⊗ π : Lp ⊗A Np → (Lp/pLp)⊗A (Np/pNp)

given by mapping components of simple tensors to their respective equivalence classes
and extending by linearity all to tensors. Hence,

l

s
⊗ n

t
7→
[
l

s

]
⊗
[n
t

]
where [·] denotes the respective equivalence classes. This is a tensor of two linear maps,
hence is linear, and is clearly surjective. Thus, we have that Lp ⊗A Np

∼= (L⊗A N)p is
nonzero so that p ∈ Supp(L⊗A N).

4https://stacks.math.columbia.edu/tag/00DK
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