Bob Kuo

Commutative Algebra Adrian Neff
Assignment 2 Ezzedine El Sai
Problem 7.

(a) Suppose that R is a UFD. Show that a prime ideal in R is generated as an ideal by
irreducible elements it contains.

(b) Now suppose that R = S[z] where S is a PID. Show that any prime ideal of R
is generated by at most 2 irreducible elements. Show that if a prime requires two
irreducible generators, then it has the form I = (p, f(z)) where p is prime in S and
f(z) is monic and irreducible mod p.

(c) Sketch the ordered set of primes of S[z] under inclusion to the best of your ability.
How long can a chain be?

Theorem 1. If R is a UFD, then prime ideals of R are generated by the irreducible elements
1t contains.

Proof. Let p C R be a prime ideal and define P = {p € p : pis irreducible}. Clearly,
(P) C p since P C p by definition. Now, let a € p then we want to show a € (P). By unique
factorization a = up{'ps? - - - pp*. Where v € R* and each p; is irreducible.

If £ = 2, then by primality either upy" or p3* are in p. Since a prime cannot contain
units, then upy" € p implies p{* € p. Primes are radical, so it follows that either p; or py
is in p and thus they are also in p. By induction, suppose that if & = n then one of p; for
i=1,2,...,nisin p. Then if k = n + 1, we can write a = (up{" ---p2) - (pyii'). Thus,
either up{* - - - p& or p,+1' is in p. That is, either p,41 € p, or by the induction hypothesis,
some p; € p for i = 1,2,...,n. It follows that for any k, at least one p; € p and so by
definition p; € P. Since a is a multiple of p;, then a € (P). ]

If in addition, R is a polynomial ring over a PID then we can describe the prime ideals
of R much more explicitly. First we will need a few lemmas.

Lemma 2. Let p be a nonzero prime ideal of S|x] where S is a UFD. If p does not contain
nonzero constants, then it contains an irreducible polynomial f of minimal degree.

Proof. The degrees of polynomials in p forms a subset of N, so by well ordering there exists a
polynomial f” € p with minimal degree. Since S is a UFD then S|x] is also a UFD. By unique
factorization f' = sf where s € S\ {0} and no primes of S divides f. If s is a unit, then
f' € pimplies f € p. If not, then either s € p or f € p. However, s € p contradicts that p has
no nonzero constants, so it follows that f € p. Observe that f is irreducible. Suppose not,
then since no primes of S divides f, then there must be non-constant polynomials g, h € R
such that f = gh. The degrees of g and h must be less than the degree of f. However, by
primality either g € p or h € p which contradicts the minimality of the degree of f. O

Lemma 3. Let p be a prime ideal in a ring R and ¢ : R — S be a surjective ring homomor-
phism such that ker ¢ C p. Then ¢(p) is prime in S.

Proof. Suppose ab € ¢(p). Let x,y, z € R such that ¢p(z) = a, ¢(y) = b, and ¢(z) = ab. Since
ab € ¢(p), we can choose z such that z € p. Next, observe that ¢p(zy—=z) = ¢(z)p(y) —d(z) =
ab—ab = 0. It follows that zy — z € p because it is in ker ¢. Thus, z € p implies that xy € p.
By primality, then either x or y is in p. It follows that either a or b is in @(p). O]
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Theorem 4. Let R = S|x] where S is a PID, then if p is a prime ideal in R, one of the
following s true:

(i) p = (0).
(ii) p is generated by a single irreducible element.
(11i) p = (p, f(x)) where p is prime in S and f(x) is monic in S and irreducible mod p.

Proof. Since S is an integral domain because it is a PID, then S[z] is also an integral domain.
A ring is a domain if and only if (0) is prime, so it follows that (0) is prime in R. We now
consider when p # (0).

First, let ¢ : S < S[x] be the inclusion map, then ¢ is a ring homomorphism. Thus,
171 (p) = pN S[z] is a prime ideal in S. Since S is a PID, then ¢:~*(p) = (0) or (p) where p is
a prime in S.

In the case that :=*(p) = (0), p consists entirely of non-constant polynomials. By Lemma
2 there exists an irreducible polynomial f with minimal degree in p. Now let g be any non-
zero polynomial in p. Let K(S) be the fraction field of S. Viewing f and g as elements
of K(S)[x], define I to be the ideal generated by f and g in K(5)[x]. Notice that K (5)[z]
is a PID because K(S) is a field, so I = (h(z)). It follows that h(x) | f(x), but f must
also be irreducible in K (S)[z] by Gauss’s Lemma. Furthermore, I # (1) because otherwise,
there exists a(z),b(z) € K(S5)[z]\ {0} such that a(z)f(x)+ b(x)g(x) = 1. Then there exists
q1,q2 € S\ {0} such that qia(z) € S[z] and ¢g9(x) € S[z]. Denote d'(z) = qra(z) and
b'(z) = gob(x) then

@0d (z) f(z) + @b/ (z)g(r) = q1qo-
That is g1q2 € p, so q1 € p or ¢go € p. This contradicts the assumption that p contains no
contants. It follows that h(z) is non-constant and divides f(z), so it must be associate to
f(z). Thus, I = (f(z)) in K(S5)[z] so f(z) | g(z) in K(S)[z]. That is, g(x) = r(x)f(z) for
some 7(z) € K(S9)[z]. Gauss’s lemma asserts that if f(z) divides g(z) in K(S)[z] then f(z)
divides g(x) in S[z|. This shows that p is generated by a single irreducible element.

On the other hand, suppose that :~!(p) = (p) for some prime p € S. Observe that (p) is
maximal because nonzero prime ideals are maximal in a PID. It follows that S/(p) is a field.
Denote F' = S/(p) and let 7 : S — S/(p) be the natural projection. This induces the ring
homomorphism 7 : S[z] — F[z]| defined by

Flanx™ + ap12™ - ax + ag) = 7(an)r" + 7(ap_1)r" 4+ -+ 7(ar)z + m(ag).

The kernel of 7 is (p), which is contained in p. Thus by Lemma 3, 7(p) is prime. Since F' is
a field, then F[x] is a PID, so 7(p) is either (0) or (f(z)) where f(z) is monic and irreducible
in Flz]. If #(p) = 0, then p consists of polynomials whose coefficients are multiples of (p),
but that is just (p).

On the other hand, suppose 7(p) = (f). We may pick f(z) € S[x] that is monic such
that #(f(z)) = f(z). That is, the coefficients of f(z) take the form a; + p where a, = 1.
Then the polynomial with coefficients of a; satisfies this description. If there exists a non-
trivial factorization f(x) = a(z)b(x) then because f(z) is monic a(x) and b(x) must both be
non-constant polynomials. This induced the nontrivial factorization f(z) = 7(a(x))7(b(x)),
which contradicts the irreducibility of f(z). Thus, f(z) must be irreducible.
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Since 7 is surjective, then

7)) =7 (7 (p)) =p+ker® = p+ (p).

Now, (p) € p so p = p + (p). Notice that f € #'((f(z))) and p contains (p). Thus,
(p, f(z)) € p. We now show that in fact (p, f(z)) = p. Let g € p, then g(z) = f(x) -
q(z). Let g(z) be a polynomial that reduces to g(z) then 7(f(z)q(x)) = 7(g(x)). That is,

f(x)q(x) = g(x) € (p, f(x)). However, f(x)q(x) € (p, f(x)) so g(x) must also be in (p, f(x)).
It follows that we also have p C (p, f(z)), so p = (p, f(z)). O

Corollary 5. A complete description of the ordering of primes in S[z] is given by
(i) (0) < any prime.
(i1) (p) < (q) if and only if (p) = (g) and (f(x)) = (9(x)) if and only if (f(2)) = (g(x)).
(iii) (p) 2 (¢, f(2)) if and only if (p) = (q):
(iv) (f(x)) = (p. g(x)) if and only if g(x) | (x) mod p.
(v,

(v) d( ))) (¢, 9(x)) if and only if (p, f(x)) = (¢, 9(x)) (i-e. (p) = (q) and f(z) = g(x)
mod p

Furthermore, a chain can have length at most 2.

Proof. (i) and (ii) hold in any integral domain. (iii) follows from the fact that p and ¢
both generate the principal ideal :=!((p, f(2))), so p and ¢ are associates. (iv) Observe that
f(x) € (p,g(x)) if and only if f(z) = hi(x)p + ho(x)g(z), but this is equivalent to the
condition that g(x) | f(x) mod p. For (v), first observe that (p) = (¢) because otherwise, the
(p,q) = 1 but (p,q) C (q,9(x)). Now, by the isomorphism theorems, the lattice of ideals in
S/(p) is isomorphic to the lattice of ideals containing (p). However, (p, f(x)) and (¢, g(z))
are both inverse images of maximal ideals under 7. Then they are both maximal among
ideals containing (p). Thus, containment implies equality. O



