
Commutative Algebra
Assignment 2

Bob Kuo
Adrian Neff

Ezzedine El Sai

Problem 7.

(a) Suppose that R is a UFD. Show that a prime ideal in R is generated as an ideal by
irreducible elements it contains.

(b) Now suppose that R = S[x] where S is a PID. Show that any prime ideal of R
is generated by at most 2 irreducible elements. Show that if a prime requires two
irreducible generators, then it has the form I = (p, f(x)) where p is prime in S and
f(x) is monic and irreducible mod p.

(c) Sketch the ordered set of primes of S[x] under inclusion to the best of your ability.
How long can a chain be?

Theorem 1. If R is a UFD, then prime ideals of R are generated by the irreducible elements
it contains.

Proof. Let p ⊆ R be a prime ideal and define P = {p ∈ p : p is irreducible}. Clearly,
(P ) ⊆ p since P ⊆ p by definition. Now, let a ∈ p then we want to show a ∈ (P ). By unique
factorization a = upα1

1 p
α2
2 · · · p

αk
k . Where u ∈ R× and each pi is irreducible.

If k = 2, then by primality either upα1
1 or pα2

2 are in p. Since a prime cannot contain
units, then upα1

1 ∈ p implies pα1
1 ∈ p. Primes are radical, so it follows that either p1 or p2

is in p and thus they are also in p. By induction, suppose that if k = n then one of pi for
i = 1, 2, . . . , n is in p. Then if k = n + 1, we can write a = (upα1

1 · · · pαn
n ) · (pαn+1

n+1 ). Thus,
either upα1

1 · · · pαn
n or p

αn+1

n+1 is in p. That is, either pn+1 ∈ p, or by the induction hypothesis,
some pi ∈ p for i = 1, 2, . . . , n. It follows that for any k, at least one pi ∈ p and so by
definition pi ∈ P . Since a is a multiple of pi, then a ∈ (P ).

If in addition, R is a polynomial ring over a PID then we can describe the prime ideals
of R much more explicitly. First we will need a few lemmas.

Lemma 2. Let p be a nonzero prime ideal of S[x] where S is a UFD. If p does not contain
nonzero constants, then it contains an irreducible polynomial f of minimal degree.

Proof. The degrees of polynomials in p forms a subset of N, so by well ordering there exists a
polynomial f ′ ∈ p with minimal degree. Since S is a UFD then S[x] is also a UFD. By unique
factorization f ′ = sf where s ∈ S \ {0} and no primes of S divides f . If s is a unit, then
f ′ ∈ p implies f ∈ p. If not, then either s ∈ p or f ∈ p. However, s ∈ p contradicts that p has
no nonzero constants, so it follows that f ∈ p. Observe that f is irreducible. Suppose not,
then since no primes of S divides f , then there must be non-constant polynomials g, h ∈ R
such that f = gh. The degrees of g and h must be less than the degree of f . However, by
primality either g ∈ p or h ∈ p which contradicts the minimality of the degree of f .

Lemma 3. Let p be a prime ideal in a ring R and φ : R→ S be a surjective ring homomor-
phism such that kerφ ⊆ p. Then φ(p) is prime in S.

Proof. Suppose ab ∈ φ(p). Let x, y, z ∈ R such that φ(x) = a, φ(y) = b, and φ(z) = ab. Since
ab ∈ φ(p), we can choose z such that z ∈ p. Next, observe that φ(xy−z) = φ(x)φ(y)−φ(z) =
ab−ab = 0. It follows that xy−z ∈ p because it is in kerφ. Thus, z ∈ p implies that xy ∈ p.
By primality, then either x or y is in p. It follows that either a or b is in φ(p).
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Theorem 4. Let R = S[x] where S is a PID, then if p is a prime ideal in R, one of the
following is true:

(i) p = (0).

(ii) p is generated by a single irreducible element.

(iii) p = (p, f(x)) where p is prime in S and f(x) is monic in S and irreducible mod p.

Proof. Since S is an integral domain because it is a PID, then S[x] is also an integral domain.
A ring is a domain if and only if (0) is prime, so it follows that (0) is prime in R. We now
consider when p 6= (0).

First, let ι : S ↪→ S[x] be the inclusion map, then ι is a ring homomorphism. Thus,
ι−1(p) = p∩ S[x] is a prime ideal in S. Since S is a PID, then ι−1(p) = (0) or (p) where p is
a prime in S.

In the case that ι−1(p) = (0), p consists entirely of non-constant polynomials. By Lemma
2 there exists an irreducible polynomial f with minimal degree in p. Now let g be any non-
zero polynomial in p. Let K(S) be the fraction field of S. Viewing f and g as elements
of K(S)[x], define I to be the ideal generated by f and g in K(S)[x]. Notice that K(S)[x]
is a PID because K(S) is a field, so I = (h(x)). It follows that h(x) | f(x), but f must
also be irreducible in K(S)[x] by Gauss’s Lemma. Furthermore, I 6= (1) because otherwise,
there exists a(x), b(x) ∈ K(S)[x] \ {0} such that a(x)f(x) + b(x)g(x) = 1. Then there exists
q1, q2 ∈ S \ {0} such that q1a(x) ∈ S[x] and q2g(x) ∈ S[x]. Denote a′(x) = q1a(x) and
b′(x) = q2b(x) then

q2a
′(x)f(x) + q1b

′(x)g(x) = q1q2.

That is q1q2 ∈ p, so q1 ∈ p or q2 ∈ p. This contradicts the assumption that p contains no
contants. It follows that h(x) is non-constant and divides f(x), so it must be associate to
f(x). Thus, I = (f(x)) in K(S)[x] so f(x) | g(x) in K(S)[x]. That is, g(x) = r(x)f(x) for
some r(x) ∈ K(S)[x]. Gauss’s lemma asserts that if f(x) divides g(x) in K(S)[x] then f(x)
divides g(x) in S[x]. This shows that p is generated by a single irreducible element.

On the other hand, suppose that ι−1(p) = (p) for some prime p ∈ S. Observe that (p) is
maximal because nonzero prime ideals are maximal in a PID. It follows that S/(p) is a field.
Denote F = S/(p) and let π : S → S/(p) be the natural projection. This induces the ring
homomorphism π̃ : S[x]→ F [x] defined by

π̃(anx
n + an−1x

n−1 + · · ·+ a1x+ a0) = π(an)xn + π(an−1)x
n−1 + · · ·+ π(a1)x+ π(a0).

The kernel of π̃ is (p), which is contained in p. Thus by Lemma 3, π̃(p) is prime. Since F is
a field, then F [x] is a PID, so π̃(p) is either (0) or (f(x)) where f(x) is monic and irreducible
in F [x]. If π̃(p) = 0, then p consists of polynomials whose coefficients are multiples of (p),
but that is just (p).

On the other hand, suppose π̃(p) = (f). We may pick f(x) ∈ S[x] that is monic such
that π̃(f(x)) = f(x). That is, the coefficients of f(x) take the form ai + p where an = 1.
Then the polynomial with coefficients of ai satisfies this description. If there exists a non-
trivial factorization f(x) = a(x)b(x) then because f(x) is monic a(x) and b(x) must both be
non-constant polynomials. This induced the nontrivial factorization f(x) = π̃(a(x))π̃(b(x)),
which contradicts the irreducibility of f(x). Thus, f(x) must be irreducible.
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Since π̃ is surjective, then

π̃−1((f)) = π̃−1(π̃(p)) = p + ker π̃ = p + (p).

Now, (p) ⊆ p so p = p + (p). Notice that f ∈ π̃−1((f(x))) and p contains (p). Thus,
(p, f(x)) ⊆ p. We now show that in fact (p, f(x)) = p. Let g ∈ p, then g(x) = f(x) ·
q(x). Let q(x) be a polynomial that reduces to q(x) then π̃(f(x)q(x)) = π̃(g(x)). That is,
f(x)q(x)− g(x) ∈ (p, f(x)). However, f(x)q(x) ∈ (p, f(x)) so g(x) must also be in (p, f(x)).
It follows that we also have p ⊆ (p, f(x)), so p = (p, f(x)).

Corollary 5. A complete description of the ordering of primes in S[x] is given by

(i) (0) � any prime.

(ii) (p) � (q) if and only if (p) = (q) and (f(x)) � (g(x)) if and only if (f(x)) = (g(x)).

(iii) (p) � (q, f(x)) if and only if (p) = (q).

(iv) (f(x)) � (p, g(x)) if and only if g(x) | f(x) mod p.

(v) (p, f(x)) � (q, g(x)) if and only if (p, f(x)) = (q, g(x)) (i.e. (p) = (q) and f(x) ≡ g(x)
mod p).

Furthermore, a chain can have length at most 2.

Proof. (i) and (ii) hold in any integral domain. (iii) follows from the fact that p and q
both generate the principal ideal ι−1((p, f(x))), so p and q are associates. (iv) Observe that
f(x) ∈ (p, g(x)) if and only if f(x) = h1(x)p + h2(x)g(x), but this is equivalent to the
condition that g(x) | f(x) mod p. For (v), first observe that (p) = (q) because otherwise, the
(p, q) = 1 but (p, q) ⊆ (q, g(x)). Now, by the isomorphism theorems, the lattice of ideals in
S/(p) is isomorphic to the lattice of ideals containing (p). However, (p, f(x)) and (q, g(x))
are both inverse images of maximal ideals under π̃. Then they are both maximal among
ideals containing (p). Thus, containment implies equality.
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