
Chain complexes, exact sequences

Chain complexes, exact sequences 1 / 15



Chain complexes

A chain complex of R-modules is a sequence

K : · · · δ3−→ K2
δ2−→ K1

δ1−→ K0
δ0−→ K1 δ1

−→ K2 δ2
−→ · · ·

such that consecutive maps compose to zero. (δn ◦ δn+1 = 0)

This condition is equivalent to im(δn+1) ⊆ ker(δn) for all n.

The nth homology module of K is Hn(K) := ker(δn)/im(δn+1).

K is exact if its homology modules are zero.

This condition is equivalent to im(δn+1) = ker(δn) for all n.

Chain complexes of R-modules form a category where a morphism α : K → L
is an indexed family of R-linear maps such that all squares are commutative
in:

· · · δn+1−→ Kn
δn−→ Kn−1

δn−1−→ · · ·
αn ↓ αn−1 ↓

· · · εn+1−→ Ln
εn−→ Ln−1

εn−1−→ · · ·
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Factoring a Complex
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0 −→ im(δn+1)
⊆−→ Kn

δn−→ im(δn)→ 0

This short sequence is exact except possibly at the middle, where the
homology is the same as in the original sequence.
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Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse

(β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).

(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse

(γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).

(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting.

A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting.

An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences

A short exact sequence (SES)

0→ A α−→ B
β−→ C→ 0

is split on the right if β has a right inverse (β ◦ δ = idC).
(A right inverse to β is also called a section of β.)

0→ A α−→ B
β−→ C→ 0

is split on the left if α has a left inverse (γ ◦ α = idA).
(A left inverse to α is also called a retraction.)

A left split sequence of groups or modules has an induced right splitting. A
right split sequence of modules has an induced left splitting. An exact
sequence is split exact if it is equipped with left and right splittings, and each
1-sided splitting is induced by the other.

Chain complexes, exact sequences 4 / 15



Split exact sequences versus biproducts

Assume that
0→ A

α−⇀↽−
γ

B
β−⇀↽−
δ

C→ 0

is split exact. This sequence represents B as a biproduct of A and C,
A⊕ C = (B, pA, pC, ιA, ιC) = (B, γ, β, α, δ).

Must check
pAιA = idA, pAιC = 0CA, pCιA = 0AC, pCιC = idC, ιApA + ιCpC = idB.

This translates into
γα = idA, γδ = 0CA, βα = 0AC, βδ = idC, αγ + δβ = idB.

For last item, write x ∈ B, as xim(α) + xim(δ). Apply αγ + δβ and show that x
is unmoved.
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Additive Functors

C is preadditive if each hom-set HomC(A,B) has specified abelian group
operations such that f ◦ (g + h) = f ◦ g + f ◦ h and (f + g) ◦ h = f ◦ h + g ◦ h.

(A category is additive if preadditive + has finite biproducts.)

A covariant functor F : C → D between (pre)additive categories is additive if

F : HomC(A,B)→ HomD(F(A),F(B))

is an abelian group homomorphism for all A,B ∈ Ob(C)

Examples.
The category of all R-modules is additive. (Say why!)

Representable functors between module categories are additive. (Say why!)

Some Properties. Additive functors between module categories preserve:
identity morphisms, zero morphisms, zero object, direct sum, chain
complexes, split exact sequences.
But they need not preserve exact sequences.
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Let’s check some of these things

1 Additive functors preserve identity morphisms.
Any functor preserves identity morphisms.

2 Additive functors preserve zero morphisms.
The zero morphism in the additive group Hom(A,B) is the group identity
element, and an additive functor is a group homomorphism.

3 Additive functors preserve zero objects.
The zero object is the unique object whose identity morphism equals its
zero morphism.

4 Additive functors preserve direct sum/coproduct/biproduct.
A⊕ B = (C, pA, pB, ιA, ιB) is a direct sum/coproduct/biproduct iff
pAιA = idA, pAιB = 0BA, pBιA = 0AB, pBιB = idB, ιApA + ιBpB = idC.

For you to check: Additive functors map chain complexes to chain
complexes, and split exact sequences to split exact sequences.
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Exactness

A functor F is left exact if the exactness of 0→ A→ B→ C implies the
exactness of 0→ F(A)→ F(B)→ F(C).

F is right exact if the exactness of A→ B→ C→ 0 implies the exactness of
F(A)→ F(B)→ F(C)→ 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A→ B→ C→ 0
implies the exactness of 0→ F(C)→ F(B)→ F(A). Etc.

Chain complexes, exact sequences 8 / 15



Exactness

A functor F is left exact if the exactness of 0→ A→ B→ C implies the
exactness of 0→ F(A)→ F(B)→ F(C).

F is right exact if the exactness of A→ B→ C→ 0 implies the exactness of
F(A)→ F(B)→ F(C)→ 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A→ B→ C→ 0
implies the exactness of 0→ F(C)→ F(B)→ F(A). Etc.

Chain complexes, exact sequences 8 / 15



Exactness

A functor F is left exact if the exactness of 0→ A→ B→ C implies the
exactness of 0→ F(A)→ F(B)→ F(C).

F is right exact if the exactness of A→ B→ C→ 0 implies the exactness of
F(A)→ F(B)→ F(C)→ 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A→ B→ C→ 0
implies the exactness of 0→ F(C)→ F(B)→ F(A). Etc.

Chain complexes, exact sequences 8 / 15



Exactness

A functor F is left exact if the exactness of 0→ A→ B→ C implies the
exactness of 0→ F(A)→ F(B)→ F(C).

F is right exact if the exactness of A→ B→ C→ 0 implies the exactness of
F(A)→ F(B)→ F(C)→ 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A→ B→ C→ 0
implies the exactness of 0→ F(C)→ F(B)→ F(A).

Etc.

Chain complexes, exact sequences 8 / 15



Exactness

A functor F is left exact if the exactness of 0→ A→ B→ C implies the
exactness of 0→ F(A)→ F(B)→ F(C).

F is right exact if the exactness of A→ B→ C→ 0 implies the exactness of
F(A)→ F(B)→ F(C)→ 0.

F is exact if it is left and right exact.

A contravariant functor is left exact if the exactness of A→ B→ C→ 0
implies the exactness of 0→ F(C)→ F(B)→ F(A). Etc.

Chain complexes, exact sequences 8 / 15



Left Exactness of Hom

Thm. Hom functors are left exact (whether covariant or not).

Proof for HomR(A, ):

Assume 0 −→ L α−→ M
β−→ N is exact, and consider

0 −→ H(A,L) α◦−→ H(A,M)
β◦−→ H(A,N).
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Nonexactness of Hom, I

Example. 0 −→ Z ⊆−→ Q ν−→ Q/Z −→ 0 is an exact sequence of
Z-modules.

If you apply HomZ(Z2, ) you obtain 0 −→ 0 −→ 0 −→ Z2 −→ 0.

Defn. An R-module P is projective if it represents an exact covariant hom
functor (equivalently if HomR(P, ) maps surjections to surjections).
This means that P is projective if whenever

P

ϕ

y
M

β−−−−→ N −−−−→ 0

there exists ϕ : P→ M such that ϕ = β ◦ ϕ.
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Nonexactness of Hom, II

Example. 0 −→ Z ⊆−→ Q ν−→ Q/Z −→ 0 is an exact sequence of
Z-modules.

If you apply HomZ( ,Z) you obtain 0 −→ 0 −→ 0 −→ Z −→ 0.

Defn. An R-module Q is injective if it represents an exact contravariant hom
functor (equivalently if HomR( ,Q) maps injections to surjections).

Examples.
Projective Thm⇐⇒ retract of free Thm⇐⇒ direct summand of free

Injective Thm⇐⇒ maximal with respect to essential extensions.

Thm. Injectivity test: (Baer’s Criterion) Hom( ,Q) is exact on all SESs iff it
is exact on those of the form 0→ I → R→ R/I → 0.
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Right Exactness of ⊗

Thm. Tensor functors are right exact.

Proof: Assume L α−→ M
β−→ N −→ 0 is exact, and consider

L⊗ A α⊗id−→ M ⊗ A
β⊗id−→ N ⊗ A −→ 0.

• β ⊗ id maps generators onto generators, so it is surjective.

• To show exactness at M ⊗ A it suffices to prove that the second map in

M ⊗ A ν−→ (M ⊗ A)/I
β⊗id−→ N ⊗ A

is invertible (I = im(α⊗ id)). To construct an inverse ψ, define
ψ : N × A→ (M ⊗ A)/I by ψ(n⊗ a) = m⊗ a + I for any m ∈ β−1(n).
ψ is well-defined because ker(β) = im(α) and im(α)⊗ A = I.
ψ is bilinear, hence extends to a map ψ of N ⊗ A. Since ψ ◦ β ⊗ id is the
identity on elements m⊗ a + I, the map β ⊗ id is 1-1.
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Nonexactness of ⊗

Example. 0 −→ Z ⊆−→ Q ν−→ Q/Z −→ 0 is an exact sequence of
Z-modules.

If you apply ⊗ Z2 you obtain 0 −→ Z2 −→ 0 −→ 0 −→ 0.

Defn. An R-module M is flat if ⊗M is exact (equivalently if ⊗M maps
injections to injections).

Examples.
Free Thm

=⇒ Projective Thm
=⇒ Flat

Thm. Flatness test: ⊗M is exact on all SESs iff it is exact on those of the
form 0→ I → R→ R/I → 0.

Thm. If S ⊆ R is a multiplicatively closed subset, then S−1R is flat as an
R-module.
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Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:

1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:

1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:

1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:

1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,

2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:

1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:

1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:

1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:
1 F is left exact and converts coproducts to products,

2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:
1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:
1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:

1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:
1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:
1 F is left exact and commutes with inverse limits,

2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Eilenberg-Watts Theorem

Samuel Eilenberg, Abstract description of some basic functors.
J. Indian Math. Soc. (N.S.) 24 (1960), 231–234 (1961).

Charles E. Watts, Intrinsic characterizations of some additive functors.
Proc. Amer. Math. Soc. 11 (1960), 5–8.

Theorem. If F : R-Mod→ S-Mod is an additive functor, then the following are equivalent:
1 F is right exact and commutes with coproducts,
2 F is naturally isomorphic to a functor of the form ⊗R M for some R, S-bimodule M.

Theorem. If F : R-Mod→ S-Mod is a contravariant additive functor, then the following are equivalent:
1 F is left exact and converts coproducts to products,
2 F is naturally isomorphic to a functor of the form HomR( ,M) for some bimodule RMS.

Theorem. If F : R-Mod→ Z-Mod is an additive functor, then the following are equivalent:
1 F is left exact and commutes with inverse limits,
2 F is naturally isomorphic to a functor of the form HomR(M, ) for some R-module M.

Chain complexes, exact sequences 14 / 15



Some things to remember

P is projective⇔ HomR(P, ) exact.

Q is injective⇔ HomR( ,Q) exact.

F is flat⇔ ⊗R F exact.
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