Homology and Cohomology

Gt SBtleS

Homology and Cohomology



Homology and Cohomology 2/8



@ Poincare introduced the idea of homology based on the concept of Betti
numbers.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

O Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

O Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

O Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

@ Nonvanishing of these groups in given dimension can be interpreted as
“d-dimensional obstructions to injectivity/projectivity/flatness”.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

O Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

@ Nonvanishing of these groups in given dimension can be interpreted as
“d-dimensional obstructions to injectivity/projectivity/flatness”.

Homology and Cohomology



@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

O Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

@ Nonvanishing of these groups in given dimension can be interpreted as
“d-dimensional obstructions to injectivity/projectivity/flatness”.

@ These groups are invariants, which can be used for making distinctions.

Homology and Cohomology



The idea behind the definitions

Homology and Cohomology



The idea behind the definitions

[Whiteboard!]

Homology and Cohomology



Computing Tor (A, B)

Homology and Cohomology



Computing Tor (A, B)

Start with a projective resolution of B:

1 1 1 o
s 2 Py 5 P 5 Py —5 B — 0.

Homology and Cohomology



Computing Tor (A, B)

Start with a projective resolution of B:
SN NN LN NG N
Apply the tensor functor A ®g _:

...@;A@;RPZ@%A@RPI%A@RPO 1&5‘>’A®RB—>O.

Homology and Cohomology



Computing Tor (A, B)
Start with a projective resolution of B:
0P, 2 p 2 py B 0.
Apply the tensor functor A ®p _:
BN A e P BB AR P Y A Py 2R A®R B — 0.

For n > 0, Torf (A, B) = homology at position n = ker(1 ® §,)/im(1 @ §,+1).
TorR(A, B) = (A ®g Py)/im(1 ® 6;) = A ®g B.

Homology and Cohomology



Computing Tor (A, B)
Start with a projective resolution of B:
0P, 2 p 2 py B 0.
Apply the tensor functor A ®p _:
BN A e P BB AR P Y A Py 2R A®R B — 0.

For n > 0, Torf (A, B) = homology at position n = ker(1 ® §,)/im(1 @ §,+1).
TorR(A, B) = (A ®g Py)/im(1 ® 6;) = A ®g B.

Applying A ®gr _to0 = L — M — N — 0, the loss of exactness is repaired
by Tor in the sense that there exist maps yielding the “LES in homology™:

Homology and Cohomology



Computing Tor (A, B)
Start with a projective resolution of B:
0P, 2 p 2 py B 0.
Apply the tensor functor A ®p _:
BN A e P BB AR P Y A Py 2R A®R B — 0.

For n > 0, Torf (A, B) = homology at position n = ker(1 ® §,)/im(1 @ §,+1).
TorR(A, B) = (A ®g Py)/im(1 ® 6;) = A ®g B.

Applying A ®gr _to0 = L — M — N — 0, the loss of exactness is repaired
by Tor in the sense that there exist maps yielding the “LES in homology™:

-+ — Tor¥(A,N) — Torf(A,L) — Torf(A,M) —
— Torf(A,N) — A®rL—-A@xM — AN — 0.

Homology and Cohomology



Tor? computes torsion

Homology and Cohomology



Tor? computes torsion

Tor?(A,Z/dZ)

Homology and Cohomology



Tor? computes torsion

Tor2(A,Z/dZ) = {a € A | da = 0}

Homology and Cohomology



Tor? computes torsion

Tor?(A,Z/dZ) = {a € A | da = 0} = 4A

Homology and Cohomology



Tor? computes torsion

Tor?(A,Z/dZ) = {a € A | da =0} = 4A = ker(d x _: A — A).

Homology and Cohomology



Tor? computes torsion

Tor?(A,Z/dZ) = {a € A | da =0} = 4A = ker(d x _: A — A).

The sequence --- -0 — 0 — Z X7 Z./d7Z — 0 is a projective/free
resolution of Z/dZ.

Homology and Cohomology



Tor? computes torsion

Tor%(A,Z/dZ) ={a€A|da=0} =4A=%ker(dx _:A—A).

The sequence --- -0 — 0 — Z X7 Z./d7Z — 0 is a projective/free
resolution of Z/dZ.

Tensoring with A yields the complex

050 A BAA/A O,

Homology and Cohomology



Tor? computes torsion

Tor%(A,Z/dZ) ={a€A|da=0} =4A=%ker(dx _:A—A).

The sequence --- -0 — 0 — Z X7 Z./d7Z — 0 is a projective/free
resolution of Z/dZ.

Tensoring with A yields the complex
050 A BAA/A O,

which can only fail to be exact at the underlined term.

Homology and Cohomology



Tor? computes torsion

Tor%(A,Z/dZ) ={a€A|da=0} =4A=%ker(dx _:A—A).

The sequence --- -0 — 0 — Z X7 Z./d7Z — 0 is a projective/free
resolution of Z/dZ.

Tensoring with A yields the complex
050 A BAA/A O,

which can only fail to be exact at the underlined term. Homology at that point
is ker(d x _)

Homology and Cohomology



Tor? computes torsion

Tor%(A,Z/dZ) ={a€A|da=0} =4A=%ker(dx _:A—A).

The sequence --- -0 — 0 — Z X7 Z./d7Z — 0 is a projective/free
resolution of Z/dZ.

Tensoring with A yields the complex
050 A BAA/A O,

which can only fail to be exact at the underlined term. Homology at that point
is ker(d x _) = Tor”(A, Z/dZ).

Homology and Cohomology



Tor? computes torsion

Tor%(A,Z/dZ) ={a€A|da=0} =4A=%ker(dx _:A—A).

The sequence --- -0 — 0 — Z X772 /dZ — 0 is a projective/free
resolution of Z /dZ.

Tensoring with A yields the complex

050 A BAA/A O,

which can only fail to be exact at the underlined term. Homology at that point
is ker(d x _) = Tor?(A,Z/dZ). We also see that TorZ(A, Z/dZ) = 0 for
n> 1.

Homology and Cohomology



Tor? computes torsion

Tor%(A,Z/dZ) ={a€A|da=0} =4A=%ker(dx _:A—A).

The sequence --- -0 — 0 — Z X772 /dZ — 0 is a projective/free
resolution of Z /dZ.

Tensoring with A yields the complex

050 A BAA/A O,

which can only fail to be exact at the underlined term. Homology at that point
is ker(d x _) = Tor?(A,Z/dZ). We also see that TorZ(A, Z/dZ) = 0 for
n> 1.

Homology and Cohomology



Generalizations

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero

divisor.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.
Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

@ M ®g N is torsion-free.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.
Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

@ M ®g N is torsion-free.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

@ M ®g N is torsion-free.
©@ O M andN are torsion-free.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

@ M ®g N is torsion-free.

©@ O M andN are torsion-free.
@ Tor®(M,N) = 0foralln > 0.

Homology and Cohomology



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

@ M ®g N is torsion-free.

© © M andN are torsion-free.
@ Tor®(M,N) = 0foralln > 0.
@ The projective dimensions of M and N sum to the projective dimension of
M ®g N, and this is less than the Krull dimension of R.

Homology and Cohomology



Computing Ext}(A, B)

Homology and Cohomology



Computing Ext}(A, B)

Start with a projective resolution of A:

1 1 1 o
s Py B P 5 Py —5 A — 0.

Homology and Cohomology



Computing Ext}(A, B)

Start with a projective resolution of A:

1 1 1 o
s Py B P 5 Py —5 A — 0.

Apply contravariant the hom functor Homg(_, B):

_od

04, 0d
0 — Homg(A, B) = Homg(Py, B) — Homg(P{,B) =— - -

Homology and Cohomology



Computing Ext}(A, B)
Start with a projective resolution of A:
0P, 2 p 2y A 0.
Apply contravariant the hom functor Homg(_, B):
o o6,

04, 4
0 — Homg(A, B) = Homg(Py, B) — Homg(P{,B) =— - -

For n > 0, Ext}(A, B) = homology at n = ker(_ o d,41)/1im(_ o d,).

Homology and Cohomology



Computing Ext}(A, B)
Start with a projective resolution of A:
2Py 2 2y A 0.

Apply contravariant the hom functor Homg(_, B):

o _0dy

04, 4
0 — Homg(A, B) = Homg(Py, B) — Homg(P{,B) =— - -

For n > 0, Ext}(A, B) = homology at n = ker(_ o d,41)/1im(_ o d,).
Eth(A,B) = ker(i o 51) &~ HomR(A’B)_

Homology and Cohomology



Computing Ext}(A, B)
Start with a projective resolution of A:
0P, 2 p 2y A 0.
Apply contravariant the hom functor Homg(_, B):
o o6,

04, 4
0 — Homg(A, B) = Homg(Py, B) — Homg(P{,B) =— - -

For n > 0, Ext}(A, B) = homology at n = ker(_ o d,41)/1im(_ o d,).
Eth(A,B) = ker(i o 51) &~ HomR(A’B)_

Ext can be computed using covariant hom instead, Homg (A, _),

Homology and Cohomology



Computing Ext}(A, B)
Start with a projective resolution of A:

1 1 1 o
s Py B P 5 Py —5 A — 0.

Apply contravariant the hom functor Homg(_, B):

o _0dy

04, 4
0 — Homg(A, B) = Homg(Py, B) — Homg(P{,B) =— - -

For n > 0, Ext}(A, B) = homology at n = ker(_ o d,41)/1im(_ o d,).
Eth(A,B) = ker(i o 51) &~ HomR(A’B)_

Ext can be computed using covariant hom instead, Homg (A, _), but one
should apply covariant hom to an injective resolution of B instead of a
projective resolution of B (or A).

Homology and Cohomology



An Example: Ext computes extension groups

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0—-B—E—A—O.

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise.

Homology and Cohomology




An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

Homology and Cohomology




An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

The sequence --- -0 —0— Z X7 Z4 — 0 is a projective/free
resolution of Zj4.

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

The sequence --- -0 —0— Z X7 Z4 — 0 is a projective/free
resolution of Z4. Apply Homg(_, Z,):

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

The sequence --- -0 —0— Z X7 Z4 — 0 is a projective/free
resolution of Z4. Apply Homg(_, Z,):

0— HomR(Z4, Zz) — HomR(Z, Zz) 4—X§ HomR(Z, Zz) —-0—---

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

The sequence --- -0 —0— Z X7 Z4 — 0 is a projective/free
resolution of Z4. Apply Homg(_, Z,):

0— HomR(Z4, Zz) — HomR(Z, Zz) 4—X§ HomR(Z, Zz) —-0—---

EXtIZ(Z4, Zz) = Zg/o = 7.

Homology and Cohomology



An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

The sequence --- -0 —0— Z X7 Z4 — 0 is a projective/free
resolution of Z4. Apply Homg(_, Z,):

0— HomR(Z4, Zz) — HomR(Z, Zz) 4—X§ HomR(Z, Zz) —-0—---
EXtIZ(Z4, Zz) = Zg/o = 7.

Ext/, (A, B) can be interpreted as the groups of inequivalent n-extensions:
O—-+B—E, — - -—E —-A—=0.

Homology and Cohomology



