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@ Poincare introduced the idea of homology based on the concept of Betti
numbers. (by(X) = number of “d-dimensional holes” of space X)

@ Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

© Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

© Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

© The machinery for computing these groups works outside of the
topological setting.

O Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

@ Nonvanishing of these groups in given dimension can be interpreted as
“d-dimensional obstructions to injectivity/projectivity/flatness”.

@ These groups are invariants, which can be used for making distinctions.
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Start with a projective resolution of B:
SN NN LN NG N
Apply the tensor functor A ®g _:

...@;A@;RPZ@%A@RPI%A@RPO 1&5‘>’A®RB—>O.
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Start with a projective resolution of B:
0P, 2 p 2 py B 0.
Apply the tensor functor A ®p _:
BN A e P BB AR P Y A Py 2R A®R B — 0.

For n > 0, Torf (A, B) = homology at position n = ker(1 ® §,)/im(1 @ §,+1).
TorR(A, B) = (A ®g Py)/im(1 ® 6;) = A ®g B.

Applying A ®gr _to0 = L — M — N — 0, the loss of exactness is repaired
by Tor in the sense that there exist maps yielding the “LES in homology™:

-+ — Tor¥(A,N) — Torf(A,L) — Torf(A,M) —
— Torf(A,N) — A®rL—-A@xM — AN — 0.
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Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d € R is not a zero
divisor. We then get TorR (A, R/(d)) = 4A and Tork(A,R/(d)) = 0 forn > 1.

With a little work, one can show that TorZ(A, Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M, N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

@ M ®g N is torsion-free.

© © M andN are torsion-free.
@ Tor®(M,N) = 0foralln > 0.
@ The projective dimensions of M and N sum to the projective dimension of
M ®g N, and this is less than the Krull dimension of R.
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Computing Ext}(A, B)
Start with a projective resolution of A:

1 1 1 o
s Py B P 5 Py —5 A — 0.

Apply contravariant the hom functor Homg(_, B):

o _0dy

04, 4
0 — Homg(A, B) = Homg(Py, B) — Homg(P{,B) =— - -

For n > 0, Ext}(A, B) = homology at n = ker(_ o d,41)/1im(_ o d,).
Eth(A,B) = ker(i o 51) &~ HomR(A’B)_

Ext can be computed using covariant hom instead, Homg (A, _), but one
should apply covariant hom to an injective resolution of B instead of a
projective resolution of B (or A).
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An Example: Ext computes extension groups

Exth(A, B) computes the group of inequivalent extensions
0— B —E— A — 0. Concrete example: 0 — Zy — E — Z4 — 0.

Exercise. Compute Ext},(Zs, Z5)

The sequence --- -0 —0— Z X7 Z4 — 0 is a projective/free
resolution of Z4. Apply Homg(_, Z,):

0— HomR(Z4, Zz) — HomR(Z, Zz) 4—X§ HomR(Z, Zz) —-0—---
EXtIZ(Z4, Zz) = Zg/o = 7.

Ext/, (A, B) can be interpreted as the groups of inequivalent n-extensions:
O—-+B—E, — - -—E —-A—=0.
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