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Why?

1 Poincare introduced the idea of homology based on the concept of Betti
numbers. (bd(X) = number of “d-dimensional holes” of space X)

2 Modern formulation is due to Emmy Noether, and focuses on homology
and cohomology groups.

3 Homology is typically defined via the Tor functor, which is derived from
the tensor functor.

4 Cohomology is typically defined via the Ext functor, which is derived
from the Hom functor.

5 The machinery for computing these groups works outside of the
topological setting.

6 Algebraically, the definition of these groups are chosen so that they
“repair the loss of exactness” for Hom and tensor.

7 Nonvanishing of these groups in given dimension can be interpreted as
“d-dimensional obstructions to injectivity/projectivity/flatness”.

8 These groups are invariants, which can be used for making distinctions.
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Computing TorR
n(A,B)

Start with a projective resolution of B:

· · · δ3−→ P2
δ2−→ P1

δ1−→ P0
δ0−→ B→ 0.

Apply the tensor functor A⊗R :

· · · 1⊗δ3−→ A⊗R P2
1⊗δ2−→ A⊗R P1

1⊗δ1−→ A⊗R P0
1⊗δ0−→ A⊗R B→ 0.

For n > 0, TorR
n (A,B) = homology at position n = ker(1⊗ δn)/ im(1⊗ δn+1).

TorR
0 (A,B) = (A⊗R P0)/ im(1⊗ δ1) ∼= A⊗R B.

Applying A⊗R to 0→ L→ M → N → 0, the loss of exactness is repaired
by Tor in the sense that there exist maps yielding the “LES in homology”:

· · · → TorR
2 (A,N)→ TorR

1 (A,L)→ TorR
1 (A,M)→

→ TorR
1 (A,N) → A⊗R L→ A⊗R M → A⊗R N → 0.
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TorZ1 computes torsion

TorZ1 (A,Z/dZ) = {a ∈ A | da = 0} = dA = ker(d × : A→ A).

The sequence · · · → 0→ 0→ Z d×→ Z→ Z/dZ→ 0 is a projective/free
resolution of Z/dZ.

Tensoring with A yields the complex

· · · → 0→ 0→ A d×→ A→ A/dA→ 0,

which can only fail to be exact at the underlined term. Homology at that point
is ker(d × ) = TorZ1 (A,Z/dZ). We also see that TorZn (A,Z/dZ) = 0 for
n > 1.
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Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor.

We then get TorR
1 (A,R/(d)) = dA and TorR

n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.

2 1 M and N are torsion-free.
2 TorR

n (M,N) = 0 for all n > 0.
3 The projective dimensions of M and N sum to the projective dimension of

M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.
2 1 M and N are torsion-free.

2 TorR
n (M,N) = 0 for all n > 0.

3 The projective dimensions of M and N sum to the projective dimension of
M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.
2 1 M and N are torsion-free.

2 TorR
n (M,N) = 0 for all n > 0.

3 The projective dimensions of M and N sum to the projective dimension of
M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Generalizations

Everything from the previous slide works in exactly the same way if we
replace Z by some other commutative ring R, provided d ∈ R is not a zero
divisor. We then get TorR

1 (A,R/(d)) = dA and TorR
n (A,R/(d)) = 0 for n > 1.

With a little work, one can show that TorZ1 (A,Q/Z) is isomorphic to the
subgroup of all torsion elements of A.

Auslander showed in the 60’s that Tor(M,N) is related to torsion in another
way.

Theorem. Let R be a regular local ring that is not a field, and let M and N be
finitely generated R-modules. TFAE:

1 M ⊗R N is torsion-free.
2 1 M and N are torsion-free.

2 TorR
n (M,N) = 0 for all n > 0.

3 The projective dimensions of M and N sum to the projective dimension of
M ⊗R N, and this is less than the Krull dimension of R.

Homology and Cohomology 6 / 8



Computing Extn
R(A,B)

Start with a projective resolution of A:

· · · δ3−→ P2
δ2−→ P1

δ1−→ P0
δ0−→ A→ 0.

Apply contravariant the hom functor HomR( ,B):

0→ HomR(A,B)
◦δ0−→ HomR(P0,B)

◦δ1−→ HomR(P1,B)
◦δ2−→ · · ·

For n > 0, ExtnR(A,B) = homology at n = ker( ◦ δn+1)/ im( ◦ δn).
Ext0R(A,B) = ker( ◦ δ1) ∼= HomR(A,B).

Ext can be computed using covariant hom instead, HomR(A, ), but one
should apply covariant hom to an injective resolution of B instead of a
projective resolution of B (or A).
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An Example: Ext computes extension groups

Ext1R(A,B) computes the group of inequivalent extensions
0→ B→ E → A→ 0. Concrete example: 0→ Z2 → E → Z4 → 0.

Exercise. Compute Ext1Z(Z4,Z2)

The sequence · · · → 0→ 0→ Z 4×→ Z→ Z4 → 0 is a projective/free
resolution of Z4. Apply HomR( ,Z2):

0→ HomR(Z4,Z2)→ HomR(Z,Z2)
4×
−→ HomR(Z,Z2) → 0→ · · ·

Ext1Z(Z4,Z2) = Z2/0 ∼= Z2.

ExtnZ(A,B) can be interpreted as the groups of inequivalent n-extensions:
0→ B→ En → · · · → E1 → A→ 0.
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