
Compactness, connectedness and continuity.

Sometimes several properties can be shown to be equivalent, perhaps under extra assump-
tions or in restricted settings. Typically one of them is then taken to be the definition of
the concept and the others are taken to be characterizations of the concept. Here are some
examples.

Compactness.

(a) (Limit characterization, equivalent to compactness for space R) A ⊆ R is compact
every every sequence in A has a convergent subsequence whose limit is in A.

(b) (Metric characterization, equivalent to (a) for any metric space) A ⊆ R is compact
if it is closed and bounded.

(c) (The Alexandrov-Urysohn definition. THE definition for any topological space) A ⊆
X is compact if every open cover has a finite subcover.

Remarks about Compactness.

(i) The implication (b)⇒(c) is called the Heine-Borel Theorem. It holds for the metric
space R, and also for Rn with the `2-metric.

(ii) The Heine-Borel Theorem does not hold for every metric space. For example, Q is
a metric subspace of R, and the set A = [0, 1]Q ⊆ Q is closed and bounded but not
compact. The metric spaces for which (b)⇒(c) are said to have the “Heine-Borel
Property”.

(iii) Examples and nonexamples:
(I) Any finite set is compact, including ∅.

(II) [0, 1]R is compact.
(III) The Cantor set is compact.
(IV) [0, 1), [0,∞), Q all fail to be compact in R.

Connectedness.

(a) (Characterization of connectedness in R) A ⊆ R is connected if it is an interval.
(This includes all sets of the form (a, b), (a, b], [a, b), or [a, b], where we allow a or b
to be ±∞.)

(b) (THE definition, valid in any topological space) A subset A ⊆ X is connected if it is
not disconnected.
A ⊆ X is disconnected if A = A1 ∪ A2, where A1 6= ∅ 6= A2 and there exist open

sets O1, O2 such that O1 ∩ A = A1 and O2 ∩ A = A2.
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Test your intuition. Are the following subsets of R connected?

(I) [0, 1) ∪ [1, 2)?
(II) [0, 1) ∪ (1, 2]?

(III) The Cantor set?
(IV) Q? R? ∅?

Continuity.

(a) (Limit characterization) f : X → Y is continuous if limn→∞ f(an) = f(limn→∞ an).
(f commutes with limits.)

(b) (Metric characterization, equivalent to (a) for any metric space) f : X → Y is
continuous at x0 if

(∀ε > 0)(∃δ > 0)(∀x)((dX(x, x0) < δ)→ (dY (f(x), f(x0)) < ε)).

f is continuous if it is continuous at every x0 ∈ X.
If X = Y = R we write

(∀ε > 0)(∃δ > 0)(∀x)((|x− x0| < δ)→ (|f(x)− f(x0)| < ε)).

(c) (THE definition for any topological space) A function f : X → Y is continuous if
the inverse image of any open set is open. (That is, f−1(O) is open.)

Some theorems.

(I) (Cantor Intersection Theorem) This is just the NIP with closed bounded intervals
replaced by compact sets.

(II) The continuous image of a compact set is compact.
(III) The continuous image of a connected set is connected.
(IV) The continuous image of a closed bounded interval is a closed bounded interval.
(V) (Extreme Value Theorem – due to Bolzano) A continuous function on a compact set

attains max amd min values on that set.
(VI) (Bolzano’s Theorem. Same as Intermediate Value Theorem) If f is continuous on

[a, b], then f assumes every intermediate value between f(a) and f(b).


