
Solutions to HW 5.

1. (Exercise 2.4.2.)

(a) Consider the recursively defined sequence y1 = 1, yn+1 = 3− yn, and set y = lim yn.
Because (yn) and (yn+1) have the same limit, taking the limit across the recursive
equation gives y = 3 − y. Solving for y, we conclude lim yn = 3/2. What is wrong
with this argument?

(yn) is a sequence of integers, so it can’t have a non-integer limit. The flaw in the
argument is the assumption that (yn) and (yn+1) converge.

(b) This time set y1 = 1 and yn+1 = 3 − 1
yn

. Can the strategy in (a) be applied to

compute the limit of this sequence?

Yes. This sequence,

(yn) = (1, 2, 5/2, 13/5, 34/13, . . .) = (1, 2, 2.5, 2.6, 2.615, . . .)

is a monotone bounded sequence, so it must converge. If lim yn = L, then applying
the Algebraic Limit Theorem to yn+1 = 3− 1

yn
we get L = 3−1/L or L2−3L+1 = 0.

This implies that L = 3±
√
5

2
. Since all of the terms of the sequence are at least 1,

L ≥ 1, so L 6= 3−
√
5

2
≈ .382. This implies that L = 3+

√
5

2
= 1 + φ ≈ 2.618.

To show that the sequence is monotone and bounded, it suffices to prove by in-
duction that 1 ≤ yn < yn+1 ≤ 3. The base case is easy, and the inductive step can
be argued as follows:

1 ≤ yn < yn+1 ≤ 3, Assumption

−1 ≤ −1/yn < −1/yn+1 ≤ −1/3, Negative inverse.

2 ≤ 3− 1/yn < 3− 1/yn+1 ≤ 3− 1/3, Add 3

= = = =

1 ≤ 2 ≤ yn+1 < yn+2 ≤ 3− 1/3 ≤ 3 Conclusion

2. (Exercise 2.4.3.)

(a) Show that

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2, . . .

converges and find the limit.

Yes. Follow the October 4 lecture notes. The limit is L = 2.
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(b) Does the sequence

√
2,

√
2
√

2,

√
2

√
2
√

2, . . .

converge? If so, find the limit.

Yes. Use the recursion a0 =
√

2 and an+1 =
√

2an. The sequence is monotone
increasing and bounded. (Show this by establishing that 1 ≤ an < an+1 ≤ 2 for all
n.) The limit satisfies L2 = 2L, so L = 0 or L = 2. L = 0 is impossible, so L = 2.

3. (Exercise 2.5.1 (a), (b), (c)) Give an example of each of the following, or argue that
such a request is impossible.

(a) A sequence that has a subsequence that is bounded but contains no subsequence
that converges.

Can’t happen. If (ai) is a sequence and
(
aij
)

is a bounded subsequence, then by

Theorem 2.5.5 the sequence
(
aij
)

has a convergent subsequence, say
(
aijk

)
. But this

is a convergent subsequence of the original sequence.

(b) A sequence that does not contain 0 or 1 as a term but contains subse- quences
converging to each of these values.

(
1

2
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1

2
,

1

3
, 1 +

1

3
,

1

4
, 1 +

1

4
, . . .

)
=

(
1

2
,
3

2
,
1

3
,
4

3
,
1

4
,
5

4
, . . .

)
.

Even terms converge to 0, odd terms converge to 1. None of the terms are integers.

(c) A sequence that contains subsequences converging to every point in the infinite set
{1, 1/2, 1/3, 1/4, 1/5, . . .}.

It suffices to create a sequence where each number 1/n appears infinitely often in
the sequence. Then each number 1/n will be the limit of a constant subsequence.

To construct such a sequence, define every other term to be 1. Define “half” of the
remaining terms to be 1/2. Define “half” of the remaining terms to be 1/3. ETC.
This yields(

1,
1

2
, 1,

1

3
, 1,

1

2
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1

4
, 1,

1

2
, 1,
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3
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5
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2
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)
,

which works.


