
Practice with the Monotone Convergence Theorem!

(1) What is

√
1 +

√
1 +
√

1 + · · · ?

First we have to decide what “

√
1 +

√
1 +
√

1 + · · ·” means. Define a sequence

a0 =
√

1, a1 =

√
1 +
√

1, a2 =

√
1 +

√
1 +
√

1,

and continue by defining an+1 =
√

1 + an. I assert that the only reasonable meaning of

“

√
1 +

√
1 +
√

1 + · · ·” is that it is the limit of the sequence

(an)n∈N = (a0, a1, a2, . . .) =

(
√

1,

√
1 +
√

1,

√
1 +

√
1 +
√

1, . . .

)
.

Here, the sequence (an)n∈N is defined by recursion by stating that

a0 = 1 and
an+1 =

√
1 + an.

The numerical values of the terms in our sequence are approximately (1, 1.414, 1.554, . . .).
It looks like it might be a monotone increasing sequence, so the MCT might prove conver-
gence of this sequence. Let’s postpone the MCT proof of convergence, and compute the
limit under the assumption that the sequence converges.

Claim. If (an)n∈N converges to limit L, then L = φ = 1+
√
5

2
= the Golden Ratio. (The

numerical value is approximately 1.618).

Proof of Claim. Assume that lim an = L. Square both sides of an+1 =
√

1 + an
to eliminate the square root symbol: we get a2n+1 = 1 + an. Apply the Algebraic Limit
Theorem to both sides of this expression to obtain L2 = 1 + L, which may be rewritten
L2 − L − 1 = 0. This shows that if lim an = L, then L must be a root of the quadratic

equation x2−x−1 = 0. The roots of this quadratic are x = 1+
√
5

2
= φ and x = 1−

√
5

2
= −1/φ.

The first is positive and the second is negative. Since L is the limit of a sequence of positive
terms, The Order Limit Theorem guarantees that L ≥ 0, so L 6= −1/φ, and it follows that
L = φ. �

Despite the last sentence of the preceding proof, we have NOT proven that L = φ yet! We
have only shown that IF (an)n∈N converges, then its limit must be L = φ. To complete the
work, we must argue that (an)n∈N converges. For this we will appeal to the MCT (Monotone
Convergence Theorem). That is, we will prove that (an)n∈N is monotone increasing and
bounded above.
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[Note that, if it is true that (an)n∈N is monotone increasing and bounded above, then we
have shown that limn→∞ an = φ must hold, hence φ is a good candidate for an upper bound
of the sequence.]

Claim. 1 ≤ an < an+1 ≤ φ for all n.

Proof of Claim. This is by induction on n.
Base case, n = 0: Here a0 = 1, a1 =

√
2 ≈ 1.414, and φ ≈ 1.618, so

1 ≤ a0 < a1 ≤ φ.

Inductive step. Assume that 1 ≤ an < an+1 ≤ φ. Then

1 ≤ an < an+1 ≤ φ, Assumption

1 + 1 ≤ 1 + an < 1 + an+1 ≤ 1 + φ, Add 1

√
1 + 1 ≤

√
1 + an <

√
1 + an+1 ≤

√
1 + φ, Take square root

= = = =

1 ≤
√

2 ≤ an+1 < an+2 ≤ φ. Desired conclusion

Some facts used when moving from one line to the next:

(1) that the square root function on the positive real line preserves the strict order. This
follows from the fact that it is the inverse of the squaring function, which preserves
the strict order on the positive real line. (Proof: The axioms of ordered fields imply
that if 0 < x < y, then xx < xy and xy < yy. By transitivity, xx < yy.)

(2) that an+1 =
√

1 + an holds for every n. This is part of the recursive definition of
(an)n∈N.

(3) that φ =
√

1 + φ holds. This is because φ is a root of x2−x−1 = 0 (hence φ2 = φ+1,
hence φ =

√
1 + φ). �

We also discussed the following problem.

(2) What is

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

?
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The only reasonable interpretation of this question is, What is the limit of the sequence

(bn)n∈N = (b0, b1, b2, . . .)

=
(

1, 1 + 1
1
, 1 + 1

1+ 1
1

, . . .
)

= (1, 2, 3/2, 5/3, 8/5, . . .).

The bn-sequence is defined by the recursion

b0 = 1,
bn+1 = 1 + 1/bn.

It is easy to see that, if limn→∞ bn = L, then by the ALT we must have lim bn+1 =
1 + 1/(lim bn), or L = 1 + 1/L. This leads to L2 = L + 1, and then L2 − L − 1 = 0. Since
L is a limit of positive terms, we must have that L = φ, just as in Problem (1). Altogether
this means that IF lim bn exists, then the limit must be φ. Can we use the MCT to prove
the limit exists?

In class we proved that limn→∞ bn DOES exist. The main steps in the argument were the
following:

(1) The Fibonacci sequence is involved. This sequence is defined by F0 = 0, F1 = 1, and
Fn+2 = Fn+1 + Fn, and its first few values are

(F0, F1, F2, . . .) = (0, 1, 1, 2, 3, 5, 8, . . .).

It is easy to see that (Fn)n∈N is a monotone increasing sequence of integers, and that
Fn ≥ n when n ≥ 5. By induction, it is not hard to show that this sequence grows
exponentially fast (Fn+2 ≥ (3/2)n for n ≥ 0). We explained why bn = Fn+2/Fn+1.

(2) The subsequence of even terms of (bn)n∈N is monotone increasing and bounded above
by φ, and the subsequence of odd terms of (bn)n∈N is monotone decreasing and
bounded below by φ.

(3) By Catalan’s Identity, |bn+1 − bn| = 1
Fn+2Fn+1

, which goes to zero. This is enough

to prove that (bn)n∈N is bounded, and that the limit of the even subsequence is the
same as that of the odd subsequence, and hence it is the limit of the whole sequence.


