
Different types of limits.

We have learned about limits of sequences. This can be used to define other kinds of
limits.

(1) Decimal expansions.

When we write π = 3.141592653589793 . . ., we are saying that π = limn→∞ an where
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is the sequence of best rational lower estimates of π whose denominators are powers of 10.
Thus any decimal expansion is an abbreviation for a limit.

When we write .9999 . . . = 1, we mean that the sequence (0, .9, .99, .999, . . .) has limit 1,
or that limn→∞(1− 10−n) = 1.1

(2) Infinite series.

When we write 2 = 1 + 1
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+ · · · , we are saying that 2 = limn→∞ sn where sn is the

n-th partial sum of
∑∞
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= 2.

More generally, we study infinite series of the form
∑
ai = a0 + a1 + a2 + · · · .

(3) Infinite products.

The infinite product Π∞n=0(1 + an) = (1 + a0)(1 + a1)(1 + a2) · · · is defined to be the limit
limn→∞ pn of the partial products

p0 = (1 + a0)

p1 = (1 + a0)(1 + a1)

p2 = (1 + a0)(1 + a1)(1 + a2)

pn = (1 + a0)(1 + a1)(1 + a2) · · · (1 + an)

1You proved that limn→∞(10−n) = 0 on Quiz 5, so by the Algebraic Limit Theorem limn→∞(1−10−n) =
1− 0 = 1. Thus, your quiz answer is the basis of a proper proof that .9999 . . . = 1.
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(4) Continued fractions.
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means limn→∞ bn, where

(b0, b1, b2, . . .) =

a0, a0 +
1

a1
, a0 +

1

a1 +
1

a2

, . . .

 .

(5) Nested roots.√
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