
The blancmange function. (Some hints in blue!)

The first example of a continuous, nowhere differentiable function was given by Karl Weier-
strass (1872). A simpler example was given later by Teiji Takagi (1901), which is now called the
blancmange1 function (or curve) or else the Takagi function (or curve).

To define it, let h(x) = inf{|x−n| | n ∈ Z} be the sawtooth function of period 1. The blancmange
function is

B(x) = h(x) +
1

2
h(2x) +

1

4
h(4x) + · · · =

∞∑
k=0

1

2k
h(2kx).

That is, B(x) =
∑∞

k=0 hk(x) where hk(x) = 1
2k
h(2kx).

General theorems from Chapter 6 can be applied to prove that the blancmange function is con-
tinuous (Weierstrass M -Test and Uniform Limit Theorem). Here we argue that it is differentiable
nowhere.

We will refer to dyadic rationals, which are rational numbers which have a representation as m
2k

whose numerator is an integer and whose denominator is a positive integer power of 2. (For the
purposes of this handout, say that m

2k
is a weight-k representation of a dyadic rational.)

(1) Draw h0, h1, h2 on the same coordinate system. Use different colors for different hn’s if
you can. On a different coordinate system, draw the first few partial sums for B(x):
h0(x), h0(x) + h1(x), h0(x) + h1(x) + h2(x).

(This graphic may help!)

1“blancmange” refers to a white, puddinglike dessert made of sugar, cream, gelatin, and spices.
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(2) Convince yourself why, if n ≥ k, hn( m
2k

) = 0.

Hint: Look back at your drawings. Convince yourself that the zeros of h0 are the integers,
which are the numbers of the form m

20
. Then convince yourself that the zeros of h1 are the

half-integers, m
21

. Then convince yourself that the zeros of h2 are the quarter-integers, m
22

.

Can you think of an explanation why the zeros of hk are the 2kth-integers, m
2k

? Finally,
convince yourself that the zeros of hk are also zeros of hk+1, hk+2, . . ..

(3) Convince yourself why, if ak := m
2k

and bk := m+1
2k

are consecutive dyadic rational of weight
k, and n < k, the function hn(x) is linear on the the interval [ak, bk], and that this linear
function has slope +1 or −1. Moreover, this slope equals the derivative of hn(x) from the
right at any point c ∈ [ak, bk). (Write this slope as h+n (c).)

Hint: Examine your drawings from the first part of this worksheet for k = 2. Look at
two consecutive zeros for h2. Now you are being asked what the earlier functions h1 and
h0 are doing between these two points. It should be clear that h1 and h0 are linear of slope
±1 between two consecutive zeros of h2. Will this kind of statement be true for higher k?

(4) We wish to show that B(x) is not differentiable at x = c for arbitrarily chosen c. For this
purpose, choose some c ∈ R which will remain fixed for the rest of this worksheet.

For this part, show that, for any weight k, it is possible to find consecutive dyadic rational
ak and bk of weight k such that ak ≤ c < bk.

Hint: If you can explain why any real number lies between two consecutive integers, then
you have solved this part for k = 0. Now, given any c and k, find an integer m such that
the real number 2kc lies between m and m + 1. Let ak = m

2k
and bk = m+1

2k
. This produces

consecutive dyadic rationals ak, bk of weight k such that ak ≤ c < bk.
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(5) For ak, c, bk as in the last part, explain these equalities:

B(bk)−B(ak)

bk − ak
=

h0(bk)− h0(ak)

bk − ak
+ · · ·+ hk−1(bk)− hk−1(ak)

bk − ak
= h+0 (c) + · · ·+ h+k−1(c).

Hint: The first equality uses the definition B(x) =
∑∞

k=0 hk(x) and the fact, from Part
(2) above, that hn( m

2k
) = 0 for n ≥ k.

The second equality uses Part (3) above. The confusing part here is might be the notation
h+n (c). Recall that this is meant to be the derivative of hn from the right at x = c. That is,

it is limx→c+
hn(x)−hn(c)

x−c . You don’t have to compute this, just remember that if n < k then

hn is linear on [ak, bk] with slope h+n (c) ∈ {+1,−1} for any c ∈ [ak, bk). This is enough to

show that hn(ak)−hn(bk)
ak−bk = h+n (c).

(6) Argue that, if B′(c) existed, then the infinite series
∑∞

k=0 h
+
k (c) would have to converge to

B′(c).

Hint: This part looks like we just apply “lim” to the previous part, but it is not quite
that easy. (Well, no, it is that easy, but some justification is required.)

We know that the sequence (ak) approaches c from the left and (bk) approaches c from

the right. So, if B′(c) exists, we would like to claim that limk→∞
B(bk)−B(ak)

bk−ak = B′(c). But

that is not how B′(c) is defined, so we need justification here.

Assume that B′(c) exists. Then limx→c
B(x)−B(c)

x−c = B′(c). This forces

lim
k→∞

B(ak)−B(c)

ak − c
= B′(c) = lim

k→∞

B(c)−B(ak)

c− ak

since the sequence (ak) approaches c. Similarly limk→∞
B(bk)−B(c)

bk−c = B′(c).
Now,

B(bk)−B(ak)

bk − ak
=

(
bk − c

bk − ak

)(
B(bk)−B(c)

bk − c

)
+

(
c− ak
bk − ak

)(
B(c)−B(ak)

c− ak

)
,

and the fractions bk−c
bk−ak and c−ak

bk−ak are nonnegative real numbers that sum to 1. This

shows that B(bk)−B(ak)
bk−ak is a weighted average of the values B(bk)−B(c)

bk−c and B(c)−B(ak)
c−ak , hence

B(bk)−B(ak)
bk−ak must lie between B(bk)−B(c)

bk−c and B(c)−B(ak)
c−ak . Since the two outer values both

approach B′(c) as k →∞, the inner value B(bk)−B(ak)
bk−ak must also approach B′(c).

(7) Explain why B′(c) cannot exist.

Hint: The logic is this: if B′(c) exists, then limk→∞
B(bk)−B(ak)

bk−ak must exist, hence∑∞
k=0 h

+
k (c) must exist. But

∑∞
k=0 h

+
k (c) does not exist. (Why?)


