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ABSTRACT. A finite algebra C is called minimal with respect to a pair § < 6 of its
congruences if every unary polynomial f of C is either a permutation, or f(6) C 4.
It is the basic idea of tame congruence theory developed by Ralph McKenzie and
David Hobby [7] to describe finite algebras via minimal algebras that sit inside
them. As shown in [7], minimal algebras have a very restricted structure.

This paper presents a new tool, the Twin Lemma, which makes it possible to
give short proofs of some of these structure theorems. This part can be read as
an alternative introduction to the theory. Our method yields new information in
the type 1 case, and is especially useful in describing E-minimal algebras (that is,
algebras that are minimal with respect to every prime congruence quotient). We
complete their theory given in [7] by proving a structure theorem for the type 1
case. Finally we show that if an algebra is minimal with respect to two quotients,
then the two types are the same, and if this type is 2, 3, or 4, then the bodies are
also equal.

1. INTRODUCTION

Tame congruence theory is a powerful, deep branch of universal algebra, which has
allowed researchers to approach and solve problems that seemed hopelessly difficult
before, and which could be applied fruitfully in other research areas as well. The main
tools are presented in the book of Ralph McKenzie and David Hobby [7], but the
theory is not so easy to learn. Since our paper investigates one of these tools (namely
the structure of (0, f)-minimal algebras), we have elected to write the corresponding
Section 3 so as to be accessible for beginners in this area. The reader (having a
background in universal algebra) can read Section 2, and some proofs referred to in
that section, to learn the necessary preliminaries, and then go to Section 3, which
will help him understand the structure of minimal algebras. Our route yields an
alternative approach to the results of Chapter 4 in [7]. We suggest that the reader
consult the book [7] continuously while reading this paper.
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The paper also offers new results. The Twin Lemma 3.1 gives new information
for the unary type (see also Theorem 3.4). This helps in characterizing the clones of
E-minimal algebras of type 1, thus supplementing the results of Chapter 13 of [7].
This characterization is given in Theorem 4.4. Finally our result on algebras that are
minimal with respect to more than one quotient is given in Theorems 5.2 and 5.1.

The results presented here have applications in the investigation of residually small
varieties (see [11]), and also in the investigation of minimal sets in subdirect powers
(see [10]). We call the reader’s attention to the paper [9] of Keith Kearnes, which
proves deep results on centrality, and some ideas of which are related to the ones
presented here. We think that the present paper is good preliminary reading for [9].

The author is greatly indebted to Ivo Rosenberg and to Joel Berman for inviting
him in 1987 to Montreal and in 1990 to Chicago where the results of the paper were
found, and also for many stimulating conversations on the topic of the paper. Many
thanks are due also to Keith Kearnes and Peter Prohle for several useful remarks
concerning the paper.

2. BASIC CONCEPTS AND RESULTS

The notation used in the paper is mostly the same as that used in [7]. In particular,
algebras are denoted by boldface capital letters, and A is the underlying set of A.
Boldface lower case letters, like b, denote elements of cartesian products of sets,
and b; stands for the i-th component of b. We start counting the elements from 1, so
b typically denotes (by,...,b,) for some integer n. Many times, in particular, when
considering polynomials of products of algebras, it is much easier to understand
definitions or arguments if elements of these products are written as column vectors,
while multiple arguments of functions are written as row vectors. If R is a binary
relation, then by a R b we mean a; R b; for all 7.

Commutator theory, originated by J. Smith [12], and developed by C. Herrmann,
W. Taylor, R. McKenzie, R. Freese, H. P. Gumm, and others, was a great discovery
in the period of 1976-80. Its significance can be compared to that of tame congruence
theory. The two main references are [5] and [2], or the reader may look at the paper [4]
for a quick introduction. Here we summarize only the facts necessary to understand
our paper.

Commutator theory works for varieties of algebras whose congruence lattices are
modular. The basic idea is that for such varieties one can give a common general-
ization of the concept of the commutator subgroup [N, M| of two normal subgroups
of a group, and of the product IJ + JI of two ideals of a ring. The modular com-
mutator is a binary operation on the congruence lattice of algebras, which has useful
algebraic properties, but, more importantly, gives a very good structure theory when
the commutator is ‘small’ (as abelian groups and rings with zero multiplication are
well-behaved with respect to general groups and general rings). These properties are
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summarized in the following theorem. Recall that for a congruence « of an algebra A
and mapping ¢ : A — B we define ¢(a) to be the congruence of B generated by all

pairs (¢(a), (b)) with a « b.

Theorem 2.1. There exists a binary operation [ , | on the congruence lattice of
every algebra A belonging to a congruence modular variety such that for all congru-
ences o, 3, B; of A we have:

(1) [, 8] = [B,a] < a A p.
2) [V 6] = View 81
(3) If ¢ : A — B is an epimorphism, then [p(a), p(5)] = ¢[a, 5].
(4) If [La,1a] = 0a (the algebra A is abelian), then A is polynomially equivalent
to a module, that is,
(a) an abelian group addition + can be defined on the underlying set of A
such that all basic operations of A are of the form

flzy, .. xn) =rixy + -+ 1rx, +

where the r; are abelian group endomorphisms, and ¢ € A;
(b) x —y+ z is a term function of A.

Algebras satisfying conditions (a) and (b) in statement (4) are called affine. Once
the commutator is defined, we can speak of abelian (solvable, nilpotent) algebras or
congruences (as their definitions from group theory carry over without modification).

There are several ways to actually define the commutator operation itself, but these
are not easy to comprehend, and for a newcomer it is probably easier to work with
the statements above, considered as axioms. We shall reproduce two of the equiva-
lent definitions. Both of these definitions are valid for arbitrary algebras (although
modularity is essential in proving Theorem 2.1). Lemmas 2.3 and 2.5 also hold with-
out assuming modularity, and we strongly recommend that the reader prove them as
exercises.

Definition 2.2. Let A be an algebra, L and R binary relations on A, and J a
congruence of A. Two polynomials g(x) and h(x) of A are called R-twins, if they
are of the form ¢g(x) = f(x,c¢) and h(x) = f(x,d) for some polynomial f of A and
vectors ¢ R d of A (of appropriate length).

We say that L centralizes R modulo 6, or that the (L, R)-term condition holds
modulo § (in notation: C'(L, R;0)) if for all polynomials f of A, elements a L b, and
vectors ¢ R d of A,

fla,e) 6 f(a,d)

)
flb,e) 6 f(b,d).
The commutator [L, R] of L and R is defined to be the smallest congruence § of A
with C(L, R;0). The largest congruence a of A satisfying C(«, R;9) is denoted
by (6 : R). We write ann (R) for (04 : R); this is the annihilator of R.



4 EMIL W. KISS

Thus, two polynomials are R-twins if they can be derived from the same polyno-
mial with different parameter sequences which are R-related componentwise, and the
(L, R)-term condition says that if two unary R-twins agree modulo § at a, then they
also agree at all other places that are L-related to a.

Note that if R denotes the compatible tolerance of A generated by R, then C(L, R; )
is equivalent to C(L, R;§). Thus it is usual to assume that R is reflexive and sym-
metric. Similarly, it is sufficient to consider those relations L that are actually con-
gruences, as shown by the following lemma.

Lemma 2.3. Assume the notation in Definition 2.2.

(1) The set of all congruences ¢ satisfying C(L, R; ) is closed under intersection
(so the commutator [L, R] indeed exists).

(2) For groups and rings the commutator coincides with the concepts mentioned
above.

(3) The set of all pairs (a,b) (not necessarily in L) satisfying the condition in
Definition 2.2 forms a congruence relation of A. This congruence is (§ : R)
(so the definition of (0 : R) is meaningful).

(4) By the ezistence of (0 : R) we have

C(\ ai,R;0) <<= (Viel)Cla,R;d),
iel
where o; € Con (A) fori e I.

The significance of twins is partially explained by the following fact. Consider a
compatible binary relation R of A as a subalgebra of A x A. Then the polynomials
of this subalgebra are exactly the pairs of R-twins of A acting componentwise. This
observation is the basis of an alternative, ‘semantic’ definition of the commutator,
given by H. P. Gumm in [5].

Definition 2.4. If A is an algebra and R is a compatible, reflexive, binary relation
on A, then the subalgebra of A? with underlying set R (that is, all R-related pairs)
is sometimes (particularly, when R is a congruence [3) denoted by A(R) (instead
of R). If L is any binary relation on A, then Ay g denotes the congruence on A(R)

generated by
{{((z,2), (y,9)) : © Ly}

Lemma 2.5. We have [L, R| = 0 if and only if the diagonal subuniverse of A(R)
(that is, the set {(z,z) : © € A}) is a union of A r-classes.

The commutator can be defined using this observation by considering factor alge-
bras. In the paper [5], Theorem 2.1 is proved using this semantic definition. The
nice pictures of the congruence-class geometries presented in this paper are really
helpful in understanding the proofs. We prefer the TC-commutator (defined in Def-
inition 2.2) in two respects.



AN EASY WAY TO MINIMAL ALGEBRAS 5

First, it yields a reasonably simple proof of the fundamental theorem of abelian
algebras (statement (4) of Theorem 2.1, originally proved by C. Herrmann [6]). The
reader is encouraged to prove the following statement due to J. Smith [12] and
H. P. Gumm [3] (for hints see Exercise 3.2 (3) of [7]). To lift this result to the
general modular case, it may be worth reading W. Taylor’s proof in [13].

Lemma 2.6. If A is an abelian algebra in a congruence permutable variety, then A

15 affine.

The second reason to use the TC-commutator is that it is better suited to go be-
yond congruence modularity. Of course, many good properties listed in Theorem 2.1
are lost. Homomorphic images of abelian algebras are not necessarily abelian, the
commutator is not necessarily commutative, and, despite Lemma 2.3 (4), it is not
necessarily distributive over joins (not even in the first variable). It remains, however,
a useful tool in tame congruence theory.

Since the commutator is not commutative in general, it is important to remember,
which side is left and which side is right in Definition 2.2. Recall that the (L, R)-term
condition says that if two R-twins (R is the relation on the right) agree modulo §
at a, then they also agree at all other places that are L-related to a. Thus we move
around in L (the relation on the left) with the variable of the twin polynomials. So
it makes no difference if a and b are vectors or single elements, since we can move
the components one at a time. On the other hand, it is important to assume that c
and d are vectors. If these are single elements, we get the binary term condition.

Definition 2.7. Let A be an algebra, L and R binary relations on A, and § a
congruence of A. We say that the (L, R)-binary term condition holds modulo §

(in notation: C?(L, R;4)) if for all binary polynomials f of A and elements a L b
and ¢ R d of A,

fla,¢) fl fla,d)
flbe) 0 f(bd).

Earlier the name ‘weak term condition’ has been used for this concept, but this
name has a different (although related) meaning in [9]. In the modular case, the
binary term condition is equivalent to the term condition. The reader may try to
prove that an algebra having a Mal'cev term, and satisfying C?(1, 1;0) is affine (see
the proof of Theorem 4.7 in [7]). This statement is a consequence of the following
trick, which is hidden in Chapter 4 of [7].

Lemma 2.8. If an algebra A admits a Mal’cev polynomial, then
C*(L,R;0) = C(R, L;6) = C(L, R; )
for all binary relations L, R of A and 6 € Con (A).
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Proof. Tt is sufficient to prove the first implication, it obviously implies the second
one (by reversing the roles of L and R). So assume that a R b and ¢ L d are elements
and vectors in A, and f(a,c) d f(a,d). For a Mal’cev polynomial m set

9w, 2) S m(f(v,2), f(x,d), f(b.d)).
Then ¢(b,z) = f(b,z), g(a,d) = f(b,d), and g(a,c) 6 f(b,d) since f(a,c) d f(a,d).

Thus we have
gla,c) 6 9(“"?)
g(b7HC) 9(b, \(|1)
f(b,c) f(b,d).

Applying the binary term condition, from g(a,d) ¢ g(b,d) we get g(a,c) d g(b,c)
(by switching the components of ¢ one at a time to the components of d). Thus
transitivity implies g(b,c) § g(b,d). Hence f(b,c) § f(b,d), as desired. O

The statement of this lemma actually holds under slightly weaker conditions, with
the same proof. Namely, m has to be Mal’cev only on the range of f. We record the
exact statement here for future reference.

Lemma 2.9. Let A be an algebra, L and R binary relations of A, and a <
congruences of A such that A satisfies C*(L, R;a). Let f be a polynomial, a R
and ¢ L d elements and vectors of A, and s = f(a,c), t = f(a,d), u = f(b,c),
v = f(b,d). Suppose that A has a ternary polynomial d satisfying d(u,v,v) = u,
d(v,v,v) =wv, and d(t,t,v) =v. Then

s= f(a,c) 6 t= f(a,d)

U
u= f(b,e) & wv=f(bd).

o
b

As the commutator is now noncommutative, the definition of nilpotence must be
adjusted (solvability remains the same). We say that an algebra A is left nilpotent if

[1a,[1a,[1a,.. . [1a,1a]...]]] =04

(for a sufficiently long expression). Right nilpotence is defined analogously. One of
the main results of K. Kearnes [9] states that for finite algebras left nilpotence is the
weakest form of nilpotence, implied, for example, by right nilpotence.

We should really speak of a left annihilator in Definition 2.2, but we shall not,
because there is no such natural definition for a right annihilator, and because in
rings our definition yields the two-sided annihilator, so calling it left annihilator may
have been misleading.

The reader can find further information on the elementary properties of centrality
in Chapter 3 of [7]. For deeper properties, the paper [9] may be consulted.
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The modular commutator is a useful tool for infinite algebras, too. We shall now
learn the technique of iteration, which plays a crucial role in tame congruence theory.
This technique works only for finite algebras. From now on, we shall consider finite
algebras in this paper, unless the context implies otherwise.

First let us clarify what is usually meant by the word idempotent in universal
algebra. An element e of a semigroup is idempotent if e = e, and a semigroup
itself is called idempotent if every element is idempotent. This has got generalized
by calling an element e of an algebra idempotent, if f(e,...,e) = e holds for every
basic operation f. The operation f is idempotent, if f(z,...,x) = x for every z, and
an algebra is idempotent, if every operation is idempotent.

On the other hand, unary functions on a set form a semigroup under composition,
so such a function f is idempotent (as a semigroup element) if f o f = f, while it
is idempotent (as an operation) if f(x) = z for every z, that is, f is the identity
map. Since this second meaning is trivial, the first usage has became accepted, and
we shall adopt this terminology, too. It rarely causes confusion in practice.

Now let f be an m-ary function (m > 1) on a set A. Let gp(x) = f(x,b). If this
unary function is idempotent for every choice of b, then f is called idempotent in its
variable x. Iteration is a main tool of tame congruence theory used to construct such
operations.

Suppose that the set A is finite. Then there exists a positive integer n = ny, such
that gy is idempotent. Setting N to be the product of the numbers ny, with b
running over the elements of A~ we see that gi,v is idempotent for every y. This
m-ary function is denoted by f(]}’), or simply by f(1), and it is idempotent in its first
variable. For example, if f is binary and N = 3, then f(?’l)(x,y) = f(f(f(x,9),y),y).
The function f;) is defined analogously. The phrase ‘we iterate f in the i-th variable
(to become idempotent)’ will mean that we construct f(;. Clearly, when iterating a
term or a polynomial of an algebra, we obtain a term or a polynomial, respectively.

As the first application of iteration we prove that finite quasigroups are Mal’cev
(see Lemma 4.6 of [7]). Recall that a quasigroup operation on a set A is a binary
function f such that f(z,a) and f(a,x) are permutations for every a € A. We shall
actually prove a slightly more general statement.

Lemma 2.10. Let f be a ternary operation on a finite set A, and B a nonempty
subset of A that is closed under f. Suppose that for every b,c € B the functions
f(x,b,¢) and f(b,c,x) are permutations of A. Then the clone generated by f contains
a ternary term d satisfying d(b,b,xz) = d(z,b,b) = x for every b € B and x € A.
Moreover, if f(z,z,x) is a permutation of A, then d can be chosen to be idempotent,
that is, to satisfy d(z,x,x) = x for all x € A.

Notice that if o is a quasigroup operation on A, then by letting B = A and
f(z,y,2) = z o z the lemma yields a Mal’cev function. So this statement is indeed a
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generalization of Lemma 4.6 of [7]. Its proof is also very similar. Therefore we only
outline its steps, and strongly encourage the reader to fill in the details.

Proof. First, if h(z) = f(z,z,x) is a permutation of A, then there is an integer n
such that A" is the identity map. Replace f by h" 1o f. Then the conditions remain
intact, and we have in addition that the new f is idempotent, that is, f(z,z,z) = x
for every x € A.

Iterate f in its first variable to become idempotent, giving an operation f(”l). By do-
ing this process in the third variable we get f). As the only idempotent permutation
is the identity map, we have

F @ b,e)be) = and  f(be, [ (b e,2)) = @
for every b,c € B and z € A. Define

d(z,y,2) = F(fiy @y, £ W0, 9)), 0, £ (9,9, 2)) -
Then d(z,b,b) = x for every b € B, x € A. Let any b € B be given and let
c= fgg)’l(b, b,b) € B. By the displayed equations above, we have f(b,b,c) = b =
f(fﬁ)’l(b, b,c),b,c)), and as f(x,b,c) is a permutation, we see that f(”l)’l(b, b,c) =b.
Hence d(b,b, z) = x. If f is idempotent, then clearly so is d. O

Finally we introduce the concept of an induced algebra (see Definition 2.2 of [7]).
Let A be an algebra and U # () a subset of A. Consider all polynomials f of A,
which can be restricted to U, that is, which satisfy that f(U,...,U) C U. The induced
algebra of A on U (denoted by A|y) is defined to have underlying set U, and its basic
operations are the restrictions f|y of all such polynomials f. The similar notation
a|y denotes the restriction of a congruence « to the set U (that is, a N (U x U)).

Let U and V' be nonempty subsets of an algebra A. We say that these subsets are
polynomially isomorphic (see Definition 2.7 of [7]) if there exist unary polynomials f
and g of A that are mutually inverse bijections between these subsets. The easy proof
of the following claim is left to the reader (it is embedded into the pages following
Definition 2.7 of [7]).

Lemma 2.11. Let U and V' be nonempty subsets of an algebra A.

(1) If the sets U and V' are polynomially isomorphic, then the induced algebras
Aly and Aly are isomorphic.

(2) If A is finite, and there exists unary polynomials f and g of A such that
f(U)=V and g(V) =U, then U and V are polynomially isomorphic.

3. THE TWIN LEMMA

One of the starting points of tame congruence theory is the structure theorem of
minimal algebras in Chapter 4 of [7]. Let § < 6 be congruences of a finite algebra C.
We say that C is minimal with respect to the quotient (9, 8) if for every f € Pol(C),
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either f is a permutation of C, or f collapses 0 to §, that is, f(0) C §. The (4, 0)-traces
of C are those blocks of # that consist of more than one d-block. The body B of C
is the union of all the traces, and the tail T is the rest of C. Clearly, every unary
polynomial that is a permutation must preserve B and T'. The following Twin Lemma
is the key to the whole of this paper.

Lemma 3.1. (The Twin Lemma) Let C be minimal with respect to (3,0), and let
B denote the body of C. Suppose that f and g are unary B x B-twin polynomials
of C such that f is a permutation but g is not. Then B s a single 0-class, which is a
union of two d-classes, and C has a binary polynomial that is a semilattice operation

on B/|p.

Proof. We shall call B x B-twin polynomials of C simply body-twins throughout
the paper. To show the reader what is going on, we shall use a special language
(and enclose the formal arguments in brackets). By the minimality of C, any unary
polynomial can be of two different characters: it is either collapsing (collapses all
traces to 0), or permutational. Both characters are clearly preserved when going
down to C/§. Therefore we may assume in the proof that § = 0¢. Thus, the word
collapsing now means that the polynomial is constant on every trace.

Let f(xz) = B (z,c) and g(z) = h'/(z,d). Since we can move from c to d coordinate
by coordinate, we may assume that A’ is binary. Iterate b’ in its first variable to get a
polynomial h = h{,) satisfying that h(z, ) is an idempotent function for every a € C.
From the process of iteration we see that h(x,c) is a permutation, but h(z, d) is not.
We also know that c¢,d € B.

Draw the multiplication table of h, where the columns correspond to the mappings
h(x,a), and the rows correspond to the mappings h(a,y). We call two columns (or
rows) f-related if they are of the form h(z,u) and h(x,v) (or h(u,y) and h(v,y)),
where (u,v) € . All columns correspond to idempotent maps, and as the only
idempotent permutation is the identity map, every column is the identity, or it is
collapsing. In particular, the column of ¢ is the identity map, and the column of d is
collapsing.

First we show that there is only one permutational column. Indeed, suppose that
there exists an element b # ¢ such that the column of b [the map h(x,b)] is also a
permutation, hence the identity map. Then we have two equal columns, hence every
row contains two equal elements [as h(z,b) = x = h(z,c) for every z|, and therefore
every row is collapsing. In other words, any two #-related columns are equal [u 0 v
implies h(z,u) = h(z,v)]. In particular, ¢ and d are in different traces. Since they
are in the body, there exist ¢ 6 ¢ and d 6 d such that ¢ # ¢ and d # d. Look
at the diagonal [the unary polynomial h(z,z)| of the table. It collapses the trace
of d [since h(d,d) = h(d',d) = h(d',d’)], and is the identity map on the trace of ¢
[since h(c,c) = c # ¢ = h(d,c) = h(d,)]. This contradiction shows that the only
permutational column is the column of c.
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Next we show that B has only two elements. To get a contradiction suppose that
there exist elements u and v such that u # v and ¢, u, v are pairwise different. The
columns of u and v are collapsing, hence any two #-related rows must have the same
character [since if v’ 6 v" and h(u/,u) = h(u',v), then h(v',u) = h(u',u,) = h(u/,v) =
h(v',v)]. Let N be the trace containing c. As h(c,c) = ¢, we have h(N, N) C N, let us
consider the subtable of A on N. All the columns except the column of ¢ are constant,
so the rows are all equal, except for the entry below ¢, where all elements of N are
listed. Therefore at most one of the rows can be a permutation, so there is one which
is collapsing. As the characters of the rows are the same, every row of the subtable
is constant, so the whole table is constant, which is impossible. [Formally: let ¢ # ¢,
d e N,and " = h(c,d) € N. Then h(c",¢) =" = h(c,d) = h(c", ), hence h(c",y)
is collapsing, hence h(c,y) and h(c,y) are collapsing, hence ¢ = h(c,c) = h(e, ) =
h(cd,cd) = h(d,c) = ¢, a contradiction.]

Thus C indeed has only one, two-element trace, which is N = {c¢,d}. We have
either h(c,d) = h(d,d) = ¢, or h(c,d) = h(d,d) = d. In the second case h is a semi-
lattice operation on N. In the first case h(d,y) switches ¢ and d, hence h(x, h(d,y))
is a semilattice operation. U

In the rest of this section we sketch those applications of the Twin Lemma,
which help describe the structure of minimal algebras. First assume that C is a
(0, 0)-minimal algebra satisfying the conclusion of the Twin Lemma. Then the in-
duced algebra on B/d|p has a semilattice operation, and is therefore nonabelian. By
Lemma 4.8 of [7], this two-element algebra is polynomially equivalent to a Boolean
algebra, or to a lattice, or to a semilattice. Accordingly we say that the type of C
with respect to (d,60) is 3, 4, or 5 (these are the nonabelian types). The structure
of these algebras is described in Lemmas 4.15 and 4.17 of [7]. We suggest that the
reader read these statements and their proofs now. The essence of the result is this.

Lemma 3.2. Let C be a (6, 0)-minimal algebra of nonabelian type. Then the body B
is a single trace (0-class), which is the union of two §-classes I and O, where I = {1}
s a one-element set. Furthermore, there exists a binary polynomial p of C satisfying
the following conditions.

(1) For allx € C — {1}, ({1,2},p) is a semilattice with neutral element 1, i.e.,
p(z,1) =p(l,z) = p(x,x) =z for allz € C.

(2) For all x € C such that x # 1 and for all u € O, p(x,u) 0 p(u,x) § x.

(3) For all z,y in C, p(z,p(x,y)) = p(x,y).

The reader may try to prove this using iteration. If p and 1 satisfy (1) — (3) above,
then p is called a pseudo-meet operation, and the element 1 a neutral element with
respect to p. In the type 3 and 4 cases the body is of the form {0, 1}, where both
elements are neutral (1 with respect to a pseudo-meet, 0 with respect to a pseudo-join
operation). Conversely, suppose that 1 # 1" are two neutral elements with respect



AN EASY WAY TO MINIMAL ALGEBRAS 11

to p and p’, respectively. Then both are in a one-element d-block contained in B.
Thus B = {1, 1’}, and the polynomials p and p’ yield a lattice structure on B, so the
type is 3 or 4. Therefore in the type 5 case there is a unique neutral element, and
this element works for every pseudo-meet operation (with respect to (d,#)). We shall
use this observation in Section 5.

Now let us investigate the case when body-twin polynomials of C always have the
same character. In this case, as we shall see later, /4 is an abelian congruence, so we
shall say that C is of abelian type with respect to (d,0). We prove a weaker statement
first, the main idea of which is from Lemma 4.27 of [7].

Definition 3.3. Let A be any algebra. Define the twin congruence 7(A) by the
following rule: (a,b) € 7(A) if and only if for every binary polynomial f of A we
have that f(a,x) is a permutation if and only if f(b, z) is a permutation.

It is straightforward to see that this is indeed a congruence.

Theorem 3.4. Let C be minimal with respect to (6,0) of abelian type, and let B be
the body of C. Then the following hold.
(1) 7(C) is the largest binary relation (3 satisfying C*(3,6;9).

(2) B is contained in a single 7(C)-class.
(3) 0 <7(C).
(4) (0 :0) =71(C), in particular, we have C(6,80;76).
Proof. We shall prove (4) later in this section. First we show (1). If a pair (a,b) is
not in 7(C), then there exists a binary polynomial f such that f(a,z) is a permu-
tation, but f(b,z) is not. By the minimality of C, f(b,z) is collapsing, so for some
(c,d) € 0 — 6 we get that f(b,c) § f(b,d). On the other hand, f(a,c) 6 — 6 f(a,d),
and this is a failure of C?({(a,b)},0;0). Conversely, if (a,b) is in 7(C), then we have
to show for every f € Polo(C) and ¢ 0 d that f(a,c) ¢ f(a,d) implies f(b,c) § f(b,d).
Suppose instead that f(b,c) 8 — 9 f(b,d). Then f(b,y) is not collapsing, so it is a
permutation by the minimality of C. On the other hand, ¢ 0 — § d, so f(a,y) is not
a permutation, which is a contradiction. Thus (1) is proved.

Statement (2) is an obvious consequence of the Twin Lemma. To prove (3) notice
that C?(8,0;6) obviously holds, so § < 7(C) by (1). But # € B2U 6, so we are done
by (2). O

Call C of type 2 with respect to (4, ) if the induced algebra on the body B of C
has a Mal’cev polynomial, and call C of type 1 otherwise.

First we look at the type 1 case. Let f be a k-ary polynomial, and Ny,..., Ny
(0, 0)-traces of C. We show that f depends on at most one variable on Ny X - -+ x Ny
modulo §. Indeed, we may assume by factoring 6 out that 6 = 0. Suppose, to
get a contradiction, that f depends on at least two variables, say on the first and
second one, on Ny X --- x Nj. Then we can fix all variables other than the first one
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in Ny X --- x N so that the resulting unary polynomial is not constant on Ny, hence
it is a permutation of C'. By the Twin Lemma, if we fix these variables arbitrarily in B,
we still get a permutation. The same holds for the second variable of f. Therefore
fixing all but the first two variables arbitrarily in B we get a binary polynomial that
is a quasigroup operation on B. By Lemma 2.10 we have a Mal’cev polynomial on B.
This contradiction proves our statement.

In particular, the induced algebras on the traces are essentially unary modulo ¢.
We now prove the type 1 case of statement (4) of Theorem 3.4. It is sufficient to
prove C(7(C), 6;0). Suppose that (a,b) € 7(C), c 6 d, and f(a,c) 0 — 6 f(a,d) for
some k- 1-ary polynomial f. We want to show that f(b,c) §—¢ f(b,d). Since we can
move ¢; and d; within their d-classes without changing anything, we may assume, by
possibly fixing some variables of f, that c¢;,d; € N; for some trace NNV;, for all i. Now
f(a,x) depends on at most one variable on the product of these traces modulo 0, say
on the first one. Therefore we have f(a,c1,co,...,ck) 0 — 9 f(a,dy,co,...,cx). By
C?(7(C), 0;6) we get that f(b,ci,co,...,cx) 0 — 08 f(b,dy,ca,...,cx). Hence f(b,x)
depends on its first variable on N7 x - -+ X Ng. Therefore it does not depend on the
others, implying f(b,c) 8 — 6 f(b,d) as desired.

We do not prove more statements on the structure of minimal algebras of type 1
(there are no more statements in [7] either), but we should keep in mind that the
Twin Lemma and Theorem 3.4 give extra information on these algebras. We shall
also investigate a special case in Section 4, namely E-minimal algebras of type 1.

The structure of minimal algebras of type 2 is given by Lemma 4.20 of [7]. We
now quote this statement, and prove it using our machinery.

Lemma 3.5. Let C be a (9, 0)-minimal algebra of type 2, and let B denote the body
of C. Then every trace is polynomially equivalent to a vector space modulo ¢, and C
has a ternary polynomial d satisfying:

(1) d(z,z,x) =x for allx € C.

(2) d(b,b,y) =y =d(y,b,b) for allb e B and y € C.

(3) for every a,b € B, the unary polynomials d(x,a,b), d(a,z,b), d(a,b,x) are
permutations of C.

(4) B is closed under d.

(5) any two (6,0)-traces N and N' are polynomially isomorphic.

FEvery ternary polynomial of C satisfying (1) and (2) also satisfies (3) and (4).

Proof. Since the type is 2, there exists a ternary polynomial f of C that is a Mal’cev
function on B. Thus f(b,b,x) = x for all b,z € B. This means that f(b,b,x)
is a permutation on B, and as C is minimal, it is a permutation on C. By the
Twin Lemma, f(b,c,z), and similarly, f(x,b,c) are permutations for every b,c € B.
Finally, f(z,x,z) is also a permutation, as it is the identity map on B. Therefore
Lemma 2.10 yields a ternary polynomial d satisfying (1) and (2).
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Now let N be a (4, 6)-trace. Then Theorem 3.4 implies C?(6, 0;6), so the induced
algebra on N/§ is abelian by Lemma 2.8. As N is a congruence-class and d is
idempotent, we have d(N, N, N) C N. Therefore the induced algebra on N/§ is
Mal’cev, hence it is affine by Lemma 2.6. It is easy to compute, using the minimality
of C, that the corresponding module must actually be a vector space.

Now suppose that a ternary polynomial d satisfies (1) and (2). Let a,b € B.
The mappings d(z,a,a) = z, and d(a,a,r) = x are permutations on C' hence so
are d(z,a,b) and d(a,b,x) by the Twin Lemma. Let ' 6 — & b. Then d(V,b,b) =
b 0—060b=db,b,b), sodl, z,b)is a permutation. Therefore d(a,z,b) is also a
permutation by the Twin Lemma, proving (3). As every permutation preserves the
body, (4) follows from (3).

Finally, let N and N’ be traces, a € N, b € N’. Then the permutation d(a, b, z)
maps b to a, so it maps N’ = b/6 into N = a/6. As C'is finite, any two traces have the
same size, and all these maps are bijections between the traces. Hence Lemma 2.11
finishes the proof. O

A ternary operation satisfying (1) — (4) is called a pseudo-Mal’cev operation. No-
tice that, in particular, we have obtained Palfy’s Theorem 4.7 in [7], too, about
(0, 1)-minimal algebras, as well as the type 2 case of statement (4) of Theorem 3.4,
which is now a direct consequence of Lemma 2.9.

The next statement (found basically in Chapter 4 of [7]) will be used later.

Lemma 3.6. Let C be a type 2 minimal algebra with respect to a quotient (3, 60), let
B denote the body and T the tail of C, and let d be a pseudo-Mal’cev operation of C.
Then the following hold.

(1) The body is a class of the twin congruence.
(2) Letbe B andt € T. Then d(t,t,b),d(b,t,t),d(t,b,t) € T.

Proof. Let b € B and t € T. We have d(x,b,b) = z, so this is a permutation. On
the other hand, d(b,b,t) = t, so d(z,b,t) maps b to t, and therefore it cannot be a
permutation. Thus the binary polynomial d(x,b,y) shows that (b,t) is not in 7(C),
proving (1).

The first two inclusions in (2) are basically proved in the book [7] (see Lemma 4.25
and the proof of Lemma 4.27 (4ii)). The proof of the third inclusion is very similar.
We present this argument, and the reader will surely be able to deduce the proofs of
the first two inclusions.

Suppose that a = d(¢,b,t) € B. Consider the polynomial

h(z) = d(d(d(x,b,t),b,t),a,x)
of C. Then h(t) = d(d(a,b,t),b,t) 7(C) d(d(b,b,t),b,t) = a. Thus h(t) € B by (1),
and therefore h cannot be a permutation, since it maps an element of the tail into the

body. On the other hand, if x 0 b, then d(x,b,t) 6 d(b,b,t) = t, but this element is
in the tail, and therefore we have d(x,b,t) § t. Therefore h(z) ¢ d(a,a,x) = x. This
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shows that h is not collapsing either, contradicting the minimality of C. Therefore
d(t,b,t) € T. To prove d(t,t,b) € T one has to use a similar argument using a
modified form of A that is found in the proof of Lemma 4.25 of [7]. O

Statement (1) is false in the type 1 case (take a 3-element set with no operations).
As an exercise, we suggest the reader to prove, based on this last lemma, statement (4)
of Lemma 4.27 in [7].

4. E-MINIMAL ALGEBRAS

A finite algebra C is called E-minimal, if it is minimal with respect to all of its prime
congruence quotients. These algebras play an important role in the description of
minimal algebras of type 2, as shown in the second part of Chapter 4 of [7]. Namely,
it is proved there that the induced algebra on the body of such a minimal algebra is
always E-minimal.

Lemma 4.29 of [7] states that if an E-minimal algebra has a nonabelian quotient,
then it is a two-element algebra. Clearly, all two-element algebras are E-minimal, so
there is nothing more one can say about the nonabelian case. E-minimal algebras
of type 2 have been completely described in Theorem 13.9 of [7]. In this section we
shall provide a similar characterization of the type 1 case.

As shown in Lemma 4.28 of [7], C is E-minimal iff every idempotent unary polyno-
mial of C is either constant or the identity map. This equivalence is a straightforward
consequence of the fact that every minimal set is the range of an idempotent unary
polynomial (see Theorem 2.11 of [7]).

Lemma 4.1. Let C be an E-minimal algebra. Suppose that f and g are unary
C x C-twins of C such that f is a permutation but g is not. Then C is a two-element
algebra, and it has a binary polynomial that is a semilattice operation.

Proof. Let § be a maximal congruence of C. Then the (J, 1¢)-body of C is C, and
therefore f and g are body-twins. So by the Twin-Lemma, the quotient (0, 1) is
nonabelian, and we are done by Lemma 4.29 of [7] stated above. O

Corollary 4.2. FEvery prime quotient of an E-minimal algebra has the same type.

Proof. Let C be an E-minimal algebra. If a nonabelian quotient occurs in C, then
by Lemma 4.29 of [7], C is a two-element algebra, and we are done. If C has a prime
quotient of type 2, then Lemma 4.1 shows that the twin congruence must be 1¢.
By Lemma 3.6, the body with respect to this quotient is C', so C' has a Mal’cev
polynomial. Therefore there is no type 1 quotient. 0

Note that Corollary 4.2 is generalized in Section 5 (see Theorem 5.2). This common
type of all the quotients is called the type of the E-minimal algebra itself.

By Lemma 4.1 the twin congruence is 1¢ for an E-minimal algebra C of abelian
type. Hence Theorem 3.4 (4) yields that such algebras are left nilpotent. This is the
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statement of Theorem 4.36 of [7] for the type 2 case, and of Corollary 4.11 of [9]
for the type 1 case. We call attention to Lemma 4.10 of [9], which is the solvable
case of Lemma 4.1 above, with a different proof. Another important exercise, also
mentioned in [9], is to deduce from Lemma 4.1 that every finite algebra in the variety
generated by a finite E-minimal algebra of abelian type is also E-minimal (and has
the same type as the generator).

So far, we have been trying to provide ‘easy’ arguments for the statements we
stated. The reader is encouraged to modify the proof of the Twin Lemma to prove
Lemma 4.1 directly (that is, without referring to the structure of minimal algebras of
nonabelian type). [Here is the idea. The only part in the proof of the Twin Lemma
using that f and g are body-twins is the fourth paragraph showing that there is only
one permutational column. Let K denote those elements of C' that correspond to
collapsing columns. By E-minimality, these columns are constants. If there are two
permutational columns, then, as in the other proof, all rows are collapsing, and the
diagonal is a permutation. Hence the diagonal permutes K, and the reader will be
able to get a quick contradiction by showing that an idempotent power of the row
of ¢ must have a fixed point inside as well as outside K|

We included this sketch partly because we wonder if it leads to a common general-
ization of the Twin Lemma, and of Lemma 4.1. From Theorem 3.4 we know that in a
(0, 0)-minimal algebra we have that all twins of permutations are permutations if and
only if C'(1¢, 0;9) holds. Thus, we are looking for conditions forcing C'(1¢, 6;0). Left
nilpotence is obviously sufficient. On the other hand, if C is solvable of type 2, then
C is full-bodied by Lemma 4.27 (4) of [7], and therefore we still have C'(1¢,0;9) by
Theorem 3.4. Unfortunately, the following algebra shows that the same conclusion
does not hold in the type 1 case. Let A = ({0, 1,2}, o), where the binary operation o
is given by

o0 1 2
00 0 O
11 10
212 2 2

It is clear from the table that twins of permutations are not permutations. We leave
as an exercise the verification of the rest of the details.

Now we present our characterization of the clones of E-minimal algebras of type 1.
Let C be any finite set of at least two elements, and let O = g < 01 < -+ < 0 = 1¢
be a chain of equivalence relations of C' with k£ > 1. Our purpose is to define a clone
E(do, - ..,0x) such that the algebra E(dy,...,0x) = (C, E(do,...,0k)) is an E-minimal
algebra of type 1. Our result will then state that an algebra is E-minimal of type 1
if and only if it is a reduct of an algebra of the form E(dy, ..., dx) for an appropriate
chain of equivalence relations. At the end of this section we shall try to explain and
illustrate the usefulness of this result.
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To define the clone E(dy, ..., dx), call a unary function f on the set C' collapsing,
if f(ds) C 051 for every 1 < s < k. If f is n-ary, then we say that f is collapsing
in its i-th variable, if no matter how we fix all other variables in C, the resulting
unary function is collapsing. Similarly, we say that f is permutational in its i-th
variable, if no matter how we fix all other variables in C| the resulting unary function
is a permutation that preserves every equivalence relation Js. (Obviously, every
permutational f satisfies that f(ds) € f(ds—1) for every 1 < s < k.) Now let
E(do, ..., 0x) be the set of all functions of C' that are either collapsing in every variable,
or permutational in one variable, and collapsing in all the others.

Lemma 4.3. The set E(dy, . ..,0x) is a clone, that is, it is closed under composition,
and contains the projections.

Proof. Clearly, an i-th projection is permutational in its ¢-th variable, and is collaps-
ing in the others. Next let f € F = E(dy,...,0) be n-ary, and gy,...,9, € E be
unary. We show that the unary composition h = f(gi,...,gn) is a permutation if f
is permutational in its i-th variable and g; is a permutation, and h is collapsing in
all other cases. Indeed, let (a,b) € d; — d5_1 for some 1 < s < k, and consider

ap = f(gl(a)’QQ(a)7‘"7gn<a>>a
ay = f(gl(b)’QQ(a)7'"7gn(a)>a

i = F((6).2).. . ga(d)).

If f is collapsing in its j-th variable, or if g; is collapsing, then we clearly have
aj—1 0s—1 a;. Therefore h is collapsing unless there exists an ¢ such that g; is a
permutation, and f is permutational in the i-th variable. Assume this. Then by
f € E, f is collapsing in all other variables, so we have a;_; d,_1 a; for every j
except for j =i4. But f(g1(b),...,9i-1(b),gi(2), git1(a),..., gn(a)) is a permutation,
and therefore a;,_y 65 — ds_1 a;, thus by transitivity, h(a) ds — ds—1 h(b). Since any
pair of equal elements is obviously in d;_1, we see that h(a) # h(b). But every pair
(a,b) with a # b is contained in some d; — d5_1, so we have proved that h is indeed a
permutation.

Now let f € E be n-ary, and g; € E be m-ary, for 1 < ¢ < n. We have to
prove that the m-ary composition h = f(g1,...,9,) € E. Let 1 < j < m, and fix all
other variables of h arbitrarily. Then we arrive at the situation investigated in the
previous paragraph. Thus we get a collapsing function unless there is an ¢ such that
f is permutational in its i-th variable, and g¢; is permutational in its j-th variable,
in which case h is permutational in its j-th variable. This cannot happen for two
different values of 7, since f, g; € F for every i. Thus h € E as stated. O

Now let E((so, <. ;5k) = <C, E((so, ce ;6k)>
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Theorem 4.4. The algebra E(dy, ..., 0) is E-minimal of type 1. Conversely, if C
is a finite E-minimal algebra of type 1, then it is a reduct of E(dyg,...,0) for any
choice of congruences Oc = g < -+ < 0 = 1o of C.

Proof. First notice that all the polynomials of E = E(d,...,d;) are terms, since
E(do,...,0x) contains the constant functions. Now let e be an idempotent unary
polynomial of E that is not constant. Let a # b be elements in the range of e, and
choose s to satisfy (a,b) € ds—ds_1. Then e does not collapse d, to d;_1, and therefore
it is a permutation. Thus E is indeed E-minimal. It is straightforward to see that
for every s, the induced algebra on any d,-block is essentially unary modulo 651, so
the type is indeed 1.

Now let C be an E-minimal algebra of type 1, and pick any maximal chain of
congruences Oc = 0y < -+ < 0 = 1¢ of C. We have to prove that every operation f
of C belongs to E(d,...,0). Indeed, f is either collapsing or a permutation in
every variable. By Lemma 4.1, this character does not depend on the way the other
variables are fixed. Finally, because the type is 1, f cannot be permutational in two
variables. Thus f indeed belongs to E(dy, ..., 0k). O

Let us explain why such a result as Theorem 4.4 can be useful. Notice that it is
not easy to construct minimal algebras in general. When the desired operation tables
are produced, it is always a nontrivial question if some complicated composition of
the basic operations spoils minimality. So one has to compute all unary polynomials,
and that is not always possible, not even with a computer.

On the other hand, to construct E-minimal algebras, one can simply pick any chain
of equivalence relations, and choose the basic operations from the set E(dy, ..., d).
Thus in the type 1 case, E-minimal algebras provide a useful way of testing con-
jectures for the general nilpotent or solvable case. For example, Examples 1 and 2
of [9], showing that left nilpotence does not imply right nilpotence in finite algebras,
are E-minimal. Example 1 is also interesting, because it generates a residually large
variety (see [11]). We present it here as an illustration on how to use Theorem 4.4 to
construct an E-minimal algebra.

Let A denote the algebra ({0,1,2,3}, 0, f), where the binary operation o and the
unary operation f are given by the following table:

o]0 1 2 3[f
0/0 0 0 01
11111 20
202 2 2 12
3/3 33 3|3

To show that this algebra is E-minimal of type 1, let 99 = 04, 0o = 14, and
denote by 6; the partition with blocks {0, 1,2}, and {3}. Then f is a permutation
preserving 0;. The operation o is permutational in its first variable: indeed, all
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columns are permutations preserving ;. It is collapsing in its second variable, since
all rows have range in a d;-block and all rows are constant on the blocks of §;. So we
could construct a minimal (moreover, E-minimal) algebra without having to compute
all unary polynomials.

5. MULTIMINIMAL ALGEBRAS

In this section we investigate the situation when an algebra is minimal with respect
to more than one quotient. This condition is weaker than E-minimality, but we are
still able to prove strong consequences. Our main result is Theorem 5.2. Before
formulating it we investigate the nonabelian case (the results presented in the next
theorem have some overlap with the results in [1]). Recall that a neutral element
of a minimal algebra of nonabelian type is a neutral element 1 with respect to a
pseudo-meet operation, and that the neutral element is unique in the type 5 case
(see Lemma 3.2 and the remarks following it).

Theorem 5.1. Let C be a (0, 0)-minimal algebra of nonabelian type. Let 7 = 7(C)
be the twin congruence. Then the following hold.

(1) If 1 is a neutral element of C, then the twin congruence is the largest con-
gruence of C that has {1} as a congruence-class.

(2) The twin congruence has a unique cover T* (so it is meet-irreducible).

(3) (1,7*) and (6,0) are perspective prime quotients (O NV T =71, and 0 AT =90).

(4) The algebra C is minimal with respect to (1, 7*).

(5) The (T, 7*)-type is the same as the (9, 0)-type.

(6) The (T, 7*)-body contains the (3, 0)-body. If the type is 3 or 4, then the two
bodies are equal. If the type is 5, then the two neutral elements are equal.

Proof. Let p be a pseudo-meet operation with neutral element 1. Define 3 by
cfd < (VfePoli(C)(f(c) =1 <= f(d)=1).

This is clearly the largest congruence of C which has {1} as a congruence-class. First
we show that 7 < 3. Let f be a unary polynomial such that f(c) = 1, f(d) # 1
for some (c¢,d). Then p(f(c),y) = y is a permutation, but p(f(d),y) is not, since it
collapses 1 and f(d). Therefore (¢, d) is not in 7. To show § < 7, suppose that there
is a pair (¢,d) € f — 7. Then there exists a binary polynomial g such that g(c,y) is a
permutation, and g(d,y) is not. Thus, g(c,b) = 1 for some b. Note that b must be in
the body B. Now g(x,b) maps c to 1, so by (¢,d) € § we have that g(d,b) = 1. As
g(d,y) is collapsing, this means that g(d,b/0) C 1/6 = {1}, that is, g(d,b") = 1 for
every b’ € B. By (c¢,d) € § again we get that g(c,b') = 1 for every &/ € B. This is a
contradiction, since g(c,y) is a permutation, and B has at least two elements. Thus
(1) is proved.

Next we show that 7* = 7V # is the unique cover of 7. Indeed, suppose that a > 7
is any congruence. Then, by (1), a contains a pair (1,a) with a # 1. Let 1 # u € B.



AN EASY WAY TO MINIMAL ALGEBRAS 19

Then u = p(u, 1) a p(u,a) 6 a by Lemma 3.2. As ¢ is a congruence of which {1} is a
block, we have 6 < 7 by (1). Therefore, 1 a u. But the congruence 6 is generated by
(1,u) and 6, so we have shown that o > 7V 6 = 7*, proving (2).

It is clear from Lemma 3.2 that 6 covers §. We have already proved 7* = 7V 6 and
d < 7, s0 (3) follows from the fact that 6 is not below 7. If f is a unary polynomial
that is not a permutation, then f(0) C §, so f(7*) C f(7) Vv f(#) C 7, showing (4).

We have B = 1/6 C 1/7*. Hence 1/7* # 1/7 = {1}, and therefore N = 1/7*
is a (1, 7%)-trace. So B is contained in the (7,7*)-body. Thus p demonstrates that
(1,7*) is of nonabelian type, hence the trace N is the (7, 7*)-body, containing B. So
if the (7, 7*)-type is not 5, then both bodies are two-element sets, and therefore they
are equal. In the type 5 case the element 1 is a neutral element for (7,7*) (since
p induces a meet operation on N/(7|x)). As the (7,7*)-neutral element is uniquely
determined, all the statements are proved. O

Theorem 5.2. Let C be a finite algebra that is minimal with respect to more than
one quotient. Then the following hold.

(1) The type of C with respect to any of these quotients is the same.

(2) If this type is 2, 3, or 4, then the corresponding bodies are also the same.

(3) If the type is 5, then the neutral element 1 is the same for all quotients,
and there is a largest one among the bodies with respect to the quotients for
which C is minimal.

Proof. Let C be a minimal algebra with respect to a quotient (4, 8}, let B denote the
body and T the tail of C. Assume that C is also minimal with respect to another
quotient (¢’,60") with body B’ and tail 7”. First consider the case, where the first
quotient is nonabelian. By Lemma 3.2, the algebra C has a pseudo-meet operation p
with neutral element 1 € B. Let a € C' — {1}. Now p(a,a) = a = p(a,1), so
p(a,y) is not a permutation. Similarly, p(z,a) is not a permutation either. Hence
these unary polynomials collapse ¢’ to §’. Thus, with ¢ ¢ d, ¢,d # 1, we have that
c=plc,c) & ple,d) & p(d,d) = d. So B’ must be the union of exactly two blocks of ¢,
one of which is {1}. Moreover, p gives a meet operation on B’/¢|g.. Therefore C is
nonabelian with respect to (&', ') also. Thus Theorem 5.1 applies to both quotients.
Since the twin congruence and its unique cover depend only on the algebra C, and
not on the quotient (4, 0) or (¢’,0), we have all statements stated in the theorem.

Now assume that the type with respect to (4,6) is 2, let d be a pseudo-Mal’cev
operation and N’ a '-trace. We prove that N’ C B. To get a contradiction suppose
that there exists an element ¢t € N'—B. Let t ¢ —¢' t/, sot’ € N'. By Lemma 3.6 (2)
we see that the unary polynomials d(z,t,t), d(t,z,t), d(t,t,x) map B to T, and
therefore they are not permutations. Applying the Twin Lemma for B’ we see that
d(t',z,t) and d(t',t', z) are not permutations either. Therefore these maps collapse
0" to &', hence

t=d(t,t,t) 8 dt' t,t) & dit' ¢ t) & dt' .t t) =1,
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which is a contradiction. Thus N’ C B. To show that the (¢’, §’)-type is 2 choose two
elements ¢ and d of N’ that are not §'-related. Then d(c,d,d) = ¢ and d(d,d,d) = d
holds by N’ C B and the properties of the pseudo-Mal’cev operation. Hence d
depends on its first variable on N’ modulo §'. From d(c,¢,d) = d and d(c,¢,c) = ¢
we see that d also depends on its third variable, hence the induced algebra on N’ is
not essentially unary, and so the the type with respect to (¢’,6’) is not 1, so it must
be 2. We have shown B’ C B, so by symmetry we see that the two bodies are equal
in this case, too. Thus Theorem 5.2 is proved. U

In the remaining types, the bodies are not necessarily equal. Any finite set (with
no operations) is an E-minimal algebra of type 1, and every subset is the body for
some prime quotient. Let S be the four-element meet-semilattice on {0, a,b, 1} with
ordering 0 < a,b < 1, where a and b are incomparable. It is easy to check that
the sets {1,a}, {1,b}, S are all bodies for suitable prime quotients, for which S is
minimal of type 5.

6. EXAMPLES

Although there is a lot of information known about minimal algebras, further
nontrivial properties may exist, especially in the type 2 case.

Problem 6.1. Give a complete characterization of (J, §)-minimal algebras of type 2.

What we have in mind is a result like Theorem 13.9 of [7], or Theorem 4.4, which
allows one to construct examples for given purposes. What nontrivial properties
must the algebra C/7(C) have? We present two examples to refute some possible
conjectures. We call the attention of the reader to Exercise 4.37 (2) of [7] showing
that a type 2 minimal algebra can have an arbitrarily long tail. We now give a more
general form of that construction, due to Peter Préhle.

Let C be a (d, §)-minimal algebra, and S any meet-semilattice. Let C* = C' U S
(disjoint union), and for any function f on C, define

« ] fle, ) if {x1,...,2,} CC
P o) = { AN{zx1,...,x,} NS) otherwise.

That is, if there is an argument outside C', then the result is the meet in the semilat-
tice S of all these arguments. Define an algebra C* on C* so that its basic operations
are the functions f*, where f runs over the basic operations of C. Extend ¢ and 6
to 0* and 6* by joining them with Og.

Example 6.2. The algebra C* is (§*, #*)-minimal of the same type and body as C.

This example works because nothing that happens in S can influence the structure
of the induced algebra on C (since S is an ideal). We could have added any congruence
of S to # and ¢ instead of Og, or we could have chosen different extensions for the
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operations. The following example is nontrivial in this respect (a similar example is
found in [8]).
Let C = ({0, 1, s,t},+), where the binary operation + is given by

+10 1 s t
00 1 s t
111 0 s t
s|s s s 0
t|t t 0 ¢t

Example 6.3. The algebra C is (0¢, #)-minimal of type 2 with body {0, 1}, where
6 is the congruence with single nontrivial block {0,1}. The function (z + y) + z is a
pseudo-Mal’cev operation satisfying d(s,t,0) = 0.

So we can come back from the tail to the body using d (but, as is necessary by
Lemma 3.6, we have d(t,t,0) =t € T'). Note that the only nontrivial congruence
of Cis # = 7(C), and the type of (0, 1¢) is 4.

[

[13]
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